Изучение защитного действия зубных паст

1) гидроксиапатит – Са (РО) (ОН) в эмали зуба 75% ГАП – самый распространенный в минерализованных тканях 2) карбонатный апатит – КАП – 19% Са (РО) СО – мягкий, легко растворимый в слабых кислотах, целочах, легко разрушается 3) хлорапатит Са (РО) Сl 4,4% мягкий 4) стронцевый апатит (САП) Са Sr (PO) - 0,9% не распространен в минеральных тканях и распространен в неживой природе.

Мин. в-ва 1 – 2% в неапатитной форме, в виде фосфорнокислого Са, дикальциферата, ортокальцифосфата. Соотношение Са / Р – 1,67 соответствует идеальному соотношению, но ионы Са могут замещаться на близкие по свойству химические элементы Ва, Сr, Mg. При этом снижается соотношение Са к Р, оно уменьшается до 1,33%, изменяются свойства этого апатита, уменьшается резистентность эмали к неблагоприятным условиям. В результате замещения гидроксильных групп на фтор, образуется фторапатит, который превосходит и по прочности и по кислотоустойчивости ГАП.

Са (РО) (ОН) + F = Ca (PO) FOH гидроксифторапатит Са (РО) (ОН) + 2F = Ca (PO) F фторапатит Са (РО) (ОН) + 20F = 10CaF + 6PO + 2OH фторид Са.

СаF - он прочный, твердый, легко выщелачивается. Если рн сдвигается в щелочную сторону, происходит разрушение эмали зуба, крапчатость эмали, флюороз.

Стронцевый апатит – в костях и зубах животных и людей, живущих в регионах с повышенным содержанием радиоактивного стронция, они обладают повышенной хрупкостью. Кости и зубы становятся ломкими, развивается стронцевый рахит, беспричинный, множественный перелом костей. В отличие от обычного рахита, стронцевый не лечится витамином Д.

Особенности строения кристалла. Наиболее типичной является гексогенальная форма ГАП, но может быть кристаллы с палочковидной, игольчатой, ромбовидной. Все они упорядочены, определенной формы, имеют упорядоченные эмаль. призмы – явл-ся структурной единицей эмали.

4 структуры: кристалл состоит из элементарных единиц или ячеек, таких ячеек может быть до 2 тысяч. Мол. масса = 1000. Ячейка – это структура 1 порядка, сам кристалл имеет Mr = 2 000 000, он имеет 2 000 ячеек. Кристалл – структура 2 порядка.

Эмалевые призмы являются структурой 3 порядка. В свою очередь, эм. призмы собраны в пучки, это структура 4 порядка, вокруг каждого кристалла находится гидратная оболочка, любое приникновение веществ на поверхность или внутрь кристалла связано в этой гидратной оболочкой.

Она представляет собой слой воды, связанной с кристаллом, в котором происходит ионный обмен, он обеспечивает постоянство состава эмали, называется эмалевой лимфой.

Вода внутрикристаллическая, от нее зависят физиологические свойства эмали и некоторые химические свойства, растворимость, проницаемость.

Вид: вода, связанная с белками эмали. В структуре ГАП соотношение Са / Р – 1,67. Но встречаются ГАП, в которых это соотношение колеблется от 1,33 до 2.

Ионы Са в ГАПе могут быть замещены на близкие по свойствам в Са другие хим. эл-ты. Это Ba, Mg, Sr, реже Na, K, Mg, Zn, ион H O. Такие замещения называются изоморфными, в тезультате соотношение Са / Р падает. Таким образом, образуется из ГАП – ГФА.

Фосфаты могут заместиться на ион РО НРО цитрат.

Гидрокситы замещаются на Cl, Br, F, J.

Такие изоморфные зам-я приводят к тому, что изменяется и св-во апатитов – резистентность эмали к кислотам и к кариесу падает.

Существуют другие причины изменения состава ГАП, наличие вакантных мест в кристалл. решетке, которые должны быть замещены с одним из ионов, возникают вакантные места чаще всего при действии кислот, уже в сформированном присталле ГАП, образование вакантных мест приводит к изменению св-в эмали, проницаемости, раствопимости, адсорб. св-ва.

Нарушается равновесие между процессом де- и реминерализации. Возникают оптим. усл-я для хим. реакций на поверхности эмали.

Физико-химические св-ва кристалла апатита Одним из важнейших вс-в кристалла явл-ся заряд. Если в кристалле ГАП 10 ост. Са, тогда считают 2 х 10 = 3 х 6 + 1 х 2 = 20 + 20 = 0.

ГАП электонейтрален, если в структуре ГАП содер-ся 8 ионов Са – Са (РО) , то 2 х 8 20 = 16 < 20, кристалл приобретает отриц. заряд. Он может и положительно заряжаться. Такие кристаллы становятся неустойчивыми. Они обладают реакционной способностью, возникает поверхностная электрохимич. неуравновешенность. ионы наход-ся в гидратной оболочке. Могут нейтрализовать заряд на поверхности апатита и такой кристалл снова приобретает устойчивость.

Стадии проникновения в-в в кристал. ГАП 3 стадии 1) ионный обмен между раствором, который омывает кристалл – это слюна и зубдесневая жидкость с его гдратной оболочкой. В нее поступают ионы, нейтрализующие заряд кристалла Са, Sr, Co, PО, цитрат. Одни ионы могут накапливаться и также легко покидать, не проникая внутрь кристалла – это ионы К и Cl, другие ионы проникают в поверхностный слой кристалла – это ионы Na и F. Стадия происходит быстро в течение неск. минут.

2) это ионный обмен между гидратной оболочкой и поверхностью кристалла, происходит отрыв иона от пов-сти кристалла и замена их на др. ионы из гидратной оболочки. В результате уменьшается или нейтрал-ся поверхн. заряд кристалла и он приобретает устойчивость. Более длительная, чем 1 стадия. В течение неск. часов. Проникают Ca, F, Co, Sr, Na, P.

3) Проникновение ионов с поверхности внутрь кристалла – называется внутрикристаллический обмен, происходит очень медленно и по мере проникновения иона скорость этой стадии замедляется. Такой способностью обладают ионы Ра, F, Са, Sr.

Наличие вакантных мест в кристалл. решетке явл-ся важным фактором в активации изоморфных замещений внутри кристалла. Проникновение ионов в кристалл зависит от R иона и уровня Е, которой он обладает, поэтому легче проникают ионы Н, и близкие по строению к иону Н. Стадия протекает дни, недели, месяцы. Состав кристалла ГАП и свойства их постоянно изменяются и зависят от ионного состава жидкости, которая омывает кристалл и состава гидратной оболочки. Эти св-ва кристаллов позволяют целенаправленно изменять состав твердых тканей зуба, под действием реминерализующих растворов с целью профилактики или лечения кариеса.

Органические в-ва эмали Доля орг. в-в 1 – 1,5%. В незрелой эмали до 20%. Орг. в-ва эмали влияют на биохимические и физические процессы, происходящие в эмали зуба. Орг. в-ва нах-ся между кристаллами апатита в виде пучков, пластинок или спирали. Осн. представители – белки, углеводы, липиды, озотсодержащие в-ва (мочевина, пептиды, цикл. АМФ, цикл. аминокислоты) .

Белки и углеводы входят в состав органич. матрицы. Все процессы реминерализации происходят на основе белковой матрицы. Большая часть представлена коллагеновыми белками. Они обладают способностью инициировать реминерализацию.

1. а) белки эмали – нерастворимы в кислотах, 0,9% ЭДТА. Они относятся к коллаген- и керамидоподобным белкам с большим количеством сер, оксипролина, гли, лиз. Эти белки играют защитную ф-цию в процессе деминерализации. Не случайно в очаге деминерализации на ст. белого или пигментированного пятна кол-во этих белков > в 4 раза. Поэтому кариозное пятно в течение нескольних лет не превращается в кариозную полость, а иногда вообще не развивается кариес. У пожилых людей к кариесу > резистентность. б) кальцийсвязывающие белки эмали. КСБЭ. Содержат ионы Са в нейтральной и слабощелочной среде и способствуют проникновению Са из слюны в зуб и обратно. На долю белков А и Б приходится 0,9% от общей массы эмали.

2. Б. растворимые в воде не связанные с минеральными в-вами. Они не обладают сродством к минер. компонентам эмали, не могут образовывать комплексы. Таких белков 0,3%.

3. Своб. пептиды и отд. аминокислоты, такие как промин, гли, вал, оксипролин, сер. До 0,1% 1) ф-я защитная. Белки окружают кристалл. Предупреждают процесс деминерализации 2) белки инициируют минерализацию. Активно участвуют в этом процессе 3) обеспечивают минер. обмен в эмали и др. твердых тканях зуба.

Углеводы представлены полисахаридами: глюкоза, галактоза, фруктоза, гликоген. Дисахариды нах-ся в свободной форме, а образуются белковые комплексы – фосфо-гликопротеиды.

Липидов очень мало. Представлены в виде гликофосфолипидов. При образовании матрицы они выполняют роль связующих мостиков между белками и минералами.

Дентин уступает по твердости. Наиболее важными элементами дентина являются ионы Са, РО, Со, Мg, F. Mg сод-ся в 3 раза больше, чем в эмали. Концентрация Na и Cl возрастает во внутренних слоях дентина.

Основное в-во дентина состоит из ГАП. Но в отличие от эмали, дентин пронизан большим количеством дентинных канальцев. Болевые ощущения передаются по нервным рецепторам. В дентинных канальцах нах-ся отростки клеток одонтобластов, пульпа и дентинная жидкость. Дентин составляет основную массу зуба, но явл. менее минерализов. в-вом, чем эмаль, по строению напоминает грубоволокнистую кость, но более твердый.

Органич. в-ва Белки, липиды, углеводы, ….

Белковый матрикс дентина - 20% от общей массы дентина. Состоит из коллагена, на его долю приходится 35% всех органических в-в дентина. Это свойство характерно для тканей лизин…мального происхождения, сод. глюкозаминогликогены (……. атинсульфат) , галактозу, гексазамиты и гелиуроновая кислоты. Дентин богат активными регуляторными белками, которые регулируют процесс реминерализации. К таким спец. белкам отн-ся амелогенины, энамелины, фосфопротеиды. Для дентина, как и для эмали, характерен заледленный обмен мин. компонентов, что имеет большое значение для сохранения стабильности тканей в условиях повышенного риска деминерализации, стресса.

Цемент зуба Покрывает тонким слоем весь зуб. Первичный цемент образован минеральным в-вом, в котором в разных направлениях проходят коллагеновые волокна, клеточные элементы – цементобласты. Цемент зрелого зуба мало обновляется. Состав: минер. компоненты в основном представлены карбонатами и фосфатами Са. Цемент не имеет как эмаль и дентин, собственных кровеносных сосудов. В верхушке зуба – клеточный цемент, основная часть – бесклеточный цемент. Клеточный напоминает кость, а бесклеточный состоит из колл. волокон и аморфного в-ва, склеивающего эти волокна.

Фтор является необходимым компонентом зубов. В состав здоровых зубов входит до 0,02% фтора, причем основная часть содержится в эмали (фторапатит). Фтор, необходимый для построения и сохранения нормальных свойств эмали, поступает в организм в основном с питьевой водой. По многочисленным данным, увеличение концентрации ионов фтора в слюне приводит к увеличению реминерализации эмали. Если содержание фтора в воде недостаточное (менее 0,00005%), прочность эмали резко снижается. Но постоянные высокие концентрации ионов фтора в воде приводят к развитию флюороза (почернению и выпадению зубов).

Болезни зубов

Чтобы сберечь зубы, нужно правильно ухаживать за ними.

Эту прописную истину каждый знает с детских лет, но тем не менее, очень сложно найти человека, ни разу в жизни не посетившего стоматолога по поводу больных зубов. Чаще всего виновником разрушения зубов становится кариес. По подсчетам специалистов кариесом страдает больше половины населения.

Утешает лишь то, что кариес - болезнь не смертельная, хотя и необратимая, ибо на месте разрушенных зубов новые не вырастают. Самым простым способом борьбы является профилактика, которая включает 3 основных компонента: правильная чистка зубов, эндо- и экзогенная профилактика. Одним из основных средств экзогенной профилактики является зубные пасты.

Гигиена полости рта является одним из разделов личной гигиены человека, она направлена на поддержание хорошего уровня здоровья и профилактику заболеваний. Одной из важнейших задач гигиены является очищение полости рта от остатков пищи, детрита, микрофлоры. Другой задачей гигиены является внесение в полость рта средств, положительно влияющих на ее состояние, укрепляющих защитные свойства и функциональные возможности. С позиций этих задач и создаются различные средства ухода за полостью рта.

Кариес зубов

Поверхность эмали покрыта пленкой, называемой "пелликулой" (пленка - лат.). Тогда как бактерии, составляющие нормальную флору полости рта, оказываются приклеенными к этой пленке, формируется бактериальная масса, называемая налетом. Бактерии налета (в особенности, Streptococcus mutans и лактобациллы) превращают принимаемые в пищу сахара посредством гликолиза в слабые органические кислоты (например, молочную, уксусную, пропионовую, муравьиную). Кислоты, произведенные этими бактериями, диффундируют сквозь налет и внутрь зуба, вымывая кальций и фосфор из эмали и впоследствии вызывая разрушение структур зуба и образование полости (рисунок 1).

Образование кариозного разрушения не происходит внезапно, а обычно по истечении нескольких месяцев или лет. Между периодами образования кислот вследствие принятия пищи буферы, такие как бикарбонаты, присутствующие в слюне, диффундируют в налет и нейтрализуют присутствующие кислоты. Это приостанавливает дальнейшую потерю кальция и фосфора, вплоть до следующего периода производства кислот.

Деминерализация / реминерализация

Минерал зубов в основном состоит из карбонированного гидроксиапатита кальция, который отличается от гидроксиапатита кальция замещением в гидроксиапатите кальция части фосфора на углерод. Карбонированный гидроксиапатит кальция более растворим, чем гидроксиапатит кальция, в особенности в кислой среде. Будучи практически нерастворимым, при значениях рН больше 7 карбонированный гидроксиапатит кальция становится повышенно растворимым при понижении рН.

После атаки сахаром рН налета снижается, в то время как бактерии налета превращают сахар в кислоту. В течение минут рН налета снижается до 4,0 или ниже. Пока рН налета остается в кислотном диапазоне и жидкости налета недонасыщены по сравнению с минералами зуба, происходит деминерализация. Нейтрализация кислот налета системой щелочного буфера в слюне может проходить на протяжении двух или трех часов. Как только кислоты налета нейтрализуются, может происходить реминерализация.

В дополнение к буферам, слюна содержит ионы кальция и фосфора, которые входят в эмаль в течение реминерализации. Реминерализация происходит между периодами деминерализации. Таким образом, деминерализация и реминерализация могут рассматриваться как динамический процесс, характеризуемый выходом кальция и фосфора из зубной эмали и назад в нее. Чтобы препятствовать развитию кариеса средняя величина деминерализации должна быть сбалансирована средней величиной реминерализации. Однако, концентрация кальция и фосфора в слюне, будучи достаточной для обеспечения нормальной реминерализации у людей находящихся на бессахарной диете, часто недостаточна, чтобы компенсировать многие эпизоды деминерализации, связанные с высоким потреблением сахара в современном обществе.

Величина рН, при которой происходит деминерализация или реминерализация зависит от концентрации кальция и фосфора в слюне и жидкости налета. Когда рН на поверхности эмали снижается, налет становится недосыщенным по отношению к минералам зубных тканей, что приводит к вымыванию их из эмали. Когда рН повышается, налет становится пересыщенным по отношению к минералу зубов, результатом чего является переход этих ионов из эмали в деминерализованные места.

Люди, страдающие от пониженного слюноотделения (ксеростомии), что бывает из-за применения определенных лекарственных средств, облучения головы и шеи или заболеваний типа синдрома Шегрена, и.т.д. испытывают недостаток буферов слюны, которые бы могли нейтрализовать кислоты налета, и увеличить содержание кальция и фосфора для реминерализации. Как результат, недостаток слюны внушительно повышает скорость развития кариеса.

Возможны 2 типа реакций в зависимости от кислотности:

Ca (PO) (OH) + 8H = 10Ca + 6 HPO + 2 H O

Ca (PO) (OH) + 2H = Ca(H O) (PO) (OH) + CA

Реакция № 2 приводит к образованию апатита в строении которого имеется вместо 10,9 атомов Са, т.е. < отношение Са/Р, что приводит к разрушению кристаллов ГАП, т.е. к деминерализации. Можно стимулировать реакцию по первому типу и тормозить деминерализацию. 2 эт. развития кариеса – появление кар. бляшки. Это гелеподобное в-во углеводно-белковой природы, в нем скапливаются микроорганизмы, углеводы, ферменты и токсины.

Рисунок 1. Показано равновесие деминерализации/реминерализации. Потери минералов из кариесных поражений происходят, когда рН налета падает. Минералы перетекают назад, когда кислоты налета нейтрализуются. Слюна служит в качестве природного источника нейтрализующих кислоты буферов и ионов минералов, что может поддерживаться фтором, содержащимся в составах для ухода за зубами.
На иллюстрации (сверху вниз, в строчках слева направо): Эмаль (с кариесным поражением). Налет. Слюна. Деминерализация. Реминерализация. Бактериальные Кислоты (Н+). Полюс Налета. Полюс Слюны.

Бляшка пористая, через нее легко проникают углеводы. 3 эт. – образование органических кислот из углеводов за счет действия ферментов кариесогенных бактерий. Сдвиг рн в кисл. сторону., происходит разрушение эмали, дентина, образование кариозной полости.

Св-во растворимости эмали определяется константой произведения растворимости К(ПР) . это величина характеризуется концентрацией и активностью катионов и анионов в слюне при контакте с ГАП. Она зависит от характера ионов К(ПР) зависит от рн слюны. В кислой среде при рн = 4 в слюне будет усиленный гидролиз соли СаН РО х2Н О -> Са и Н РО при рн = 6,0 – 6,2. К(ПР) определяется концентрацией ионов Са и НРО, поэтому соль будет гидролизоваться.

Са(НРО) х Н О, кот. идут на образование кристаллов ГАП, т.е. преобладает процесс минерализации. Расворимость эмали будет снижаться. Значит, перенасыщенность эмали ГАП явл-ся защитным механизмом, уравновешивающим процессы минерализации и деминерализации, что обеспечивает постоянство состава и структуры минерализ. тканей.

Современные представления о минерализации твердых тканей зуба 2 этапа 1) образование органич. матрикса 2) обызвествление этого матрикса.

Оба процесса требуют большой затраты тепла, участия специфич ферментов, белков, ионов Са и Р, регулируется гормоном и витаминами, образовавшейся органич. матрикс обладает ферментат. активностью. Есть спец. ферменты, которые активируют процессы осаждения мин. в-в на органическом матриксе, относится щелочная фосфатоза.


8-09-2015, 22:07


Страницы: 1 2 3 4 5
Разделы сайта