Эволюция иммунной системы

с огромным разнообразием форм беспозвоночных организация позвоночных по общему плану довольно единообразна и все они принадлежат к одному типу хордовых. Хотя эволюционное древо позвоночных имеет многочисленные уровни и ветви, в том числе бесчелюстных, хрящевых рыб. костных рыб. амфибий, рептилий, птиц и млекопитающих, основные клеточные и молекулярные компоненты врожденного иммунитета у всех современных челюстноро-тых удивительно консервативны. Однако усложнению строения тела соответствует возрастание специализации лимфоидной ткани и функций лимфоцитов, а также увеличение разнообразия классов иммуноглобулинов. Самой сложной по структуре и функциям иммунной системой обладают млекопитающие.

Ф клетки и эволюция МНС

Цитотоксические и хелперные Т-лимфоциты млекопитающих, несущие бв-Ф-клеточные рецепторы, распознают большинство чужеродных антигенов только в том случае, если они презентированы в нужной форме собственными полиморфными молекулами МНС. Поэтому филогенез некоторых Т-кле-точных популяций и эволюцию МНС следует рассмотреть вместе.

Функциональные критерии и/или молекулярные и генетические данные доказывают присутствие МНС у всех челюстноротых позвоночных, от хрящевых рыб и выше.

МНС подробно изучен у пойкипотермных позвоночных Xenopus

Недавно проведенные исследования позволили обнаружить гены МНС у хрящевых рыб, чьи предки дивергировали от линии развития других позвоночных более 400 млн. лет назад. Однако наиболее полно гены и белки МНС изучены среди пойкилотермных у шпорцевой лягушки Xenopuslaevis.

Классические антигены МНС у XenopusБелки класса 1а у Xenopusполиморфны и кодируются примерно 20 аллелями. Они присутствуют на поверхности всех зрелых клеток, но в наибольшей степени — на гемопоэтических клетках. б-Цепи этих белков имеют молекулярную массу 40—44 кДа; они образуют 3 домена и нековалентно связаны с Р2 -микроглобулином. Белки МНС класса 1 у Xenopusнеобычны в том отношении, что кодируются одним генным локусом.

Неклассические антигены МНС у XenopusСреди генов класса I у Xenopusпервым было идентифицировано большое семейство мономорфных неклассических МНС-подобных молекул* Гены, кодирующие эти молекулы, и классические МНС-гены расположены в разных хромосомах. Ген класса lb, по-видимому, кодирует молекулу, гомологичную белок-связывающим участкам белков теплового шока 70. Недавно предложена гипотеза, согласно которой пептид-связывающая область молекул МНС класса I сформировалась в процессе эволюции из предсуществовавших БТШ. Неклассические МНС-подобные белки, ассоциированные с эпителием, обнаружены у всех изученных позвоночных; предполагается, что они могут обладать различными функциями, например распознавать БТШ патогенных организмов или инфицированных/угнетенных собственных клеток и затем презентировать эти консервативные пептиды Т-клеткам с рестриктированными ТкР.

Антигены МНС класса II у XenopusМолекулы МНС класса II у Xenopusполиморфны и конститутивно экс-прессированы лишь на некоторых зрелых клетках, в том числе на тимоцитах, В- и Т-лимфоии-тах и различных АПК, таких как клетки, сходные с клетками Лангерганса кожного эпидермиса. Белки класса II состоят из кодируемых генами МНС а- и в-цепей; обе цепи представляют собой трансмембранные гликопротеи-ны с молекулярной массой 30-35 кДа. Гены в-цепей молекул МНС класса II у Xenopusкодируют полипептиды, имеющие почти 50% гомологию с в-цепями МНС класса II млекопитающих. При синтезе белки МНС класса II временно связаны с инвариантной цепью. У Xenopusимеются три локуса в-генов МНС класса II.

Экспрессия МНС у Xenopusна каждой стадии жизненного цикла различна

Интересная особенность экспрессии МНС в онтогенезе у Xenopusзаключается в том, что до стадии метаморфоза классические молекулы МНС класса I не экспрессируются на поверхности каких-либо клеток. Напротив, молекулы класса II появляются уже на ранней стадии развития головастиков на В-клетках и некоторых эпителиальных клетках, непосредственно контактирующих с внешней средой. Это свидетельствует о том, что экспрессия классических молекул класса I не является необходимой для ранних стадий развития или для функционирования иммунной системы на стадии головастиков. Не исключено, однако, что важную роль в иммунитете головастиков играют неклассические белки класса I. На этой стадии онтогенеза основное значение, возможно, имеет клеточный иммунитет, рестриктирован-ный по молекулам МНС класса II. Более широкое представительство молекул МНС класса II у головастиков по сравнению со зрелыми лягушками указывает на то, что на низших ступенях эволюции, в более примитивной иммунной системе, именно эти молекулы, возможно, несли функцию презентации антигенов.

МНС у других позвоночных

Белки МНС классов I и II и полиморфные гены класса II недавно обнаружены у хрящевых рыб. Среди костистых рыб генами МНС класса I и Р2 -микроглобулина обладает, как установлено, радужная форель и генами МНС класса II — карп.

Аксолотли, для которых характерны относительно слабые Т-клеточные реакции на аллоан-тигены. обладают а- и в-цепями молекул МНС класса II с ограниченным полиморфизмом. Эти земноводные экспрессируют также кодируемые МНС эритроцитарные антигены, сходные с б-ue-пями класса I и с полиморфными молекулами класса IV. присутствующими на ядерных эритроцитах курицы. Они могут присутствовать также у Xenopus.б-Цепи класса I и гетероди мерные молекулы класса II найдены и у различных пресмыкающихся.

У различных позвоночных фенотипически и функционально идентифицированы Т-клетки

У птиц найдены бв- и гд-ФкС в комплексе с коре-цепторными молекулами CD3, CD4 и CD8. В настоящее время появляются данные о наличии некоторых из этих рецепторов или составляющих их цепей у рыб и амфибий. Например, гены из тимоцитов и спленоцитов мексиканского аксолотля обнаруживают значительную гомологию с генами в-цепей ТкР пгиц и млекопитающих. На поверхности тимоцитов и лимфоидных клеток опухоли тимуса у Xenopusприсутствует белок 55 кДа, сходный по аминокислотной последовательности с д-цепью ТкР. С помощью полученных в настоящее время моноклональных антител анти-Xenopusобнаруживаются маркеры, возможно соответствующие CD5 и CD8. У радужной форели недавно выявлены генные сегменты, кодирующие в-цепи ТкР, однако получить монокло-нальные антитела, специфичные по отношению к Т-клеткам рыб, пока не удалось. У хрящевых рыб найдены четыре различных типа генов Т-клеточных рецепторов. Клеточная и молекулярная основа реакции СКЛ, наблюдающейся у ми-ксин, пока не расшифрована.

Важнейшее значение для иммунных реакций у пойкилотермных животных имеет температура. У сома низкая температура тормозит пролиферацию Т- клеток. Эти эффекты обусловлены низким содержанием некоторых ненасыщенных жирных кислот в Т-клетках рыб и связанной с этим текучестью мембран. Поэтому корм с высоким содержанием соответствующих жирных кислот может способствовать лучшей адаптации рыб к низкой температуре. Олеиновая кислота снимает также наблюдаемую при низких температурах супрессию реакций Т-клеток млекопитающих invitro.

Эволюция В-клеток и иммуноглобулинов

Тяжелые и легкие цепи иммуноглобулинов имеются у различных позвоночных

Обнаруженные у миксин белки, ранее считавшиеся антителами, в настоящее время идентифицированы как белки комплемента СЗ—С5. Пока у круглоротых не удалось выявить молекул, принадлежащих к суперсемейству иммуноглобулинов.

Все челюстноротые позвоночные вырабатывают антитела к широкому кругу антигенов. Однако антитела, вырабатываемые пойкилотермными позвоночными, характеризуются низкой аффинностью и слабой иммунологической памятью по сравнению с антителами у гомойотермных позвоночных. Структура антител эволюционно консервативна; у всех животных эти белки состоят из мультидоменных тяжелых и легких полипептидных иммуноглобулиновых цепей, которые могут экспрессироваться на поверхности

В-клеток, играя роль рецепторов, или секретиро-ваться активированными В-клетками в кровь.

У всех челюстноротых позвоночных присутст^ вует полимерный IgM, а у рыб антитела принадлежат в основном к этому классу. Каждая тяжелая м-цепь состоит из четырех констант-* ных и одного вариабельного доменов; тяжелые и легкие цепи связаны дисульфидными мостиками. Семейство м-цепей обнаруживает в филоге-, незе значительное разнообразие; например, между м-цепями сома и мыши имеется лишь 24% гомология по аминокислотной последовательности.

У некоторых хрящевых рыб, таких как скаты и' акулы, обнаружены низкомолекулярные антитела без м-цепей, но эволюционная связь IgR с другими изотипами З-цепей остается неясной. У амфибий, рептилий и птиц имеется состоящий из четырех константных доменов изо-тип тяжелых цепей, получивший обозначение [gY. Предположительно он является предшественником IgG и IgE млекопитающих, с которыми имеет структурное и функциональное сходство. У аксолотля IgY может быть и секреторным иммуноглобулином, так как в кишечнике он связан с молекулами, сходными с секреторными. Интересно, что несмотря на отсутствие у рыб IgE, костистые рыбы демонстрируют реакции гиперчувствительности I типа; возможно, у них имеются связанные с тканями гомоцитотропные антитела. У Xenopusизотип IgX, продукция которого в отличие от IgY является тимус-независимой, может быть эквивалентом секреторного IgA млекопитающих, поскольку этот изотип присутствует в основном в кишечнике. Изотип IgA, возможно, впервые появляется у птиц.

Для многих пойкилотермных характерно и разнообразие легких цепей. Два антигенно различных типа легких цепей, один из которых сходен с к-цепью, обнаружены у Xenopusи два — у сома, черепахи и аллигатора. У акул имеются как к-, так и л-цепи; это свидетельствует, что дивергенция предковых легких цепей произошла до этапа хрящевых рыб.

Усатая акула-нянька, как недавно установлено, обладает ранее неизвестной молекулой им-муноглобулинового суперсемейства, которая, возможно, эволюционно предшествовала появлению иммуноглобулинов и ТкР. Эта молекула состоит из одного вариабельного и пяти константных доменов и присутствует в сыворотке в виде димера. Кодирует НАР генный локус, который подвергается перестройке и соматическому мутированию. В настоящее время у хрящевых рыб выявлен новый класс химерных антител; это позволяет усомниться в том, что первичным изотипом lg является IgM.

У низших позвоночных обнаружены четыре типа организации генов иммуноглобулинов

Активные исследования локуса иммуноглобули-новых генов у пойкилотермных позвоночных с помощью технологии рекомбинантной ДНК позволили в последние годы обнаружить четыре типа его организации.

Амфибии и костистые рыбы У этих животных ло-кус IgH организован по тому же типу, что и у млекопитающих. У Xenopus, например, имеется 80—100 сегментов Vh, 15 — Dhи 9 — Jh. Обнаружены как структурные области, так и области, определяющие комплемен-тарность. Константные области каждой цепи у Xenopusкодируются четырьмя экзонами Сн. Легкие цепи кодируются двумя разными хромосомами, каждая с сегментами Vl, Jl и Cl. У костистых рыб гены легких цепей иммуноглобулинов обнаруживают «мультикластерную» организацию, типичным примером которой служит их организация у акул.

В процессе созревания В-клеток у Xenopus, как и у млекопитающих, происходят множественные перестройки иммуноглобулиновых генов: существует и аллельное исключение, приводящее к появлению моноспецифичных В-лим-фоцитов. У Xenopusнайдены активированные ре-комбиназой гены, но разнообразие антител при этом весьма незначительно; у взрослых особей имеется всего примерно 5-105 различных молекул антител. Ограниченное созревание аффинности после активации В-клеток у Xenopus, по-видимому, не связано с отсутствием соматического мутирования иммуноглобулиновых генов. Скорее это можно связать с неэффективной селекцией мутантов из-за отсутствия в лимфоид-ных органах холоднокровных соответствующих центров размножения. Лимфоузлы с центрами размножения найдены лишь у птиц и млекопитающих. Хотя у головастиков Xenopusимеются те же три изотипа lg, какие присутствуют у зрелых особей, репертуар антител у тех и других различен. На репертуар lg у зрелых особей влияют генные перестройки, происходящие при новой волне созревания В-клеток после метаморфоза. Третья гипервариабельная область у зрелых особей приобретает дополнительное разнообразие вследствие случайного добавления Н-концевых остатков, тогда как у головастиков этого не происходит.

Возникновение разнообразия антител у птиц В данном случае оно связано с иным типом организации иммуноглобулиновых генов и происходит в характерном только для птиц месте — в расположенной у клоаки фабрициевой сумке. В локусе легких цепей у курицы имеется один V-ген, который вначале перестраивается и соединяется с одним комплексом J—С. Ло-кус IgH содержит также область множественных

D-генов. Перестройка происходит в течение лишь ограниченного периода раннего развития, когда стволовые клетки колонизируют фабрици-еву сумку; в отличие от этого у мыши и человека перестройка иммуноглобулиновых генов в пре-„ В-клетках происходит в течение всей жизни организма. Затем сегменты перестроенных иммуноглобулиновых генов заме-») щаются у курицы нуклеотидными последовательностями из псевдогенов, примыкающих к един-iственному V-гену. Генные конверсии происходят с высокой частотой в течение всего срока пролиферации В-клеток в сумке.

Третий тип организации генных покусов 1д обнаружен у хрящевых рыб В этом случае тяжелаяи легкиецепи иммуноглобулинов! кодируются многочисленными мелкими отдельными кластерами, включающими все V-, J- и С-гены. Каждый кластер иммуноглобулиновых генов по последовательности ДНК отличается от других. Эти последовательности имеют гаметную конфигурацию. Антитела акул обладают, по-видимому, чрезвычайно разнообразным репертуаром связывающих специфичностей, но, поскольку разнообразие закодировано в гаметной ДНК, а не обусловлено соматическими механизмами, между особями различия в иммуноглобулинах отсутствуют. Таким образом, формирование разнообразия иммуноглобулинов за счет перестройки соматических генов характерно не для всех позвоночных. У хрящевых рыб присутствует большое количество врожденных антител против разнообразных антигенов; эти антитела аналогичны полиспецифичным IgM-антителам млекопитающих, которые в онтогенезе секретируются В-клетками CD5+ . Неизвестно, может ли имеющаяся у акул кластерная организация субъединиц иммуноглобулиновых генов обусловливать клональную рестрикцию В-клеток. Однако уровень специфических антител у них может возрастать и без общего повышения содержания lg в сыворотке, что указывает на существование кло-нальной селекции.

Предварительные данные говорят о том, что у целокантов — эволюционных «реликтов», найденных в живом состоянии в Индийском океане, может присутствовать новый локус IgH.

Клетки системы врожденного иммунитета

У большинства позвоночных присутствуют нормальные клетки-киллеры

У млекопитающих З К представлены популяцией больших гранулярных лимфоцитов, отличающихся от Т- и В-клеток. В отличие от Тц они способны спонтанно лизировать трансформированные клетки, не экспрессирующие антигены МНС. НК-подобные лимфоидные клетки обнаружены и у некоторых низших позвоночных, включая птиц, рептилий, амфибий и костистых рыб. Более того, неспецифические цитотоксические клетки недавно выявлены даже у протохордовых; они оказались способными уничтожать опухолевые клетки млекопитающих. Установлено, что макрофаги как хрящевых, так и костных рыб обладают спонтанной цитотоксичностью, и доказано существование у акул антителозависимых клеточных цито-токсических реакций.

Моноклональные антитела против НК-по-добных клеток сома модулируют цитотоксиче-ское действие З К рыб и человека в отношении линий трансформированных клеток человека. Это свидетельствует об эволюционной консервативности соответствующих рецепторов к антигенам. У курицы обнаружены клетки, цитотокси-ческий эффект которых не рестриктирован по МНС; возможно, они представляют собой З К. Эти клетки сходны с НК млекопитающих тем, что содержат в цитоплазме CD3. не имеют на поверхности комплекса ТкР—CD3 и часто экспрес-сируют CD8. Такие особенности указывают на близкое родство НК- и Т-клеток. Однако и у млекопитающих и у птиц НК имеют внетимусное происхождение.

Фагоцитарная активность у рыб

Проблема устойчивости рыб к болезням имеет особое значение для рыбного хозяйства. В связи с этим подробно изучаются факторы, способные усиливать фагоцитарную активность у рыб. Для их поиска важна разработка методов длительного культивирования лейкоцитов рыб, например сома и карпа, invitro. Повышения активности фагоцитов рыб по отношению к бактериальным антигенам можно легко добиться путем введения убитых клеток патогенных микробов и их продуктов. Для повышения связанного с фагоцитами иммунитета у рыб применяются и в-глюканы; они оказались хорошими адъювантами для вакцин, хотя механизм их действия еще не выяснен. Ци-токины, например продуцируемый Т-клетками рыб «гамма-интерферон» и ФНОа человека, си-нергично усиливают дыхательную активность макрофагов радужной форели, приводя к продукции токсичных для бактерий метаболитов кислорода. Активацию макрофагов рыб может блокировать ФЦСв млекопитающих. У рыб обнаружены хемокин-подобные факторы, способные влиять на подвижность макрофагов. Поскольку при искусственном разведении рыб может возникать проблема иммуносупрессии, вызванной стрессом, представляет интерес недавно описанная способность иммуноактивного пептида FK-565 блокировать такую супрессию.

В различных воспалительных процессах у млекопитающих, как правило, принимают участие лейкотриены и другие липидные медиаторы. К настоящему времени установлено, что эйкозанои-ды синтезируются и у рыб и выполняют у них важную функцию в воспалительных реакциях. Например, лейкотриен В4 усиливает миграцию лейкоцитов радужной форели; эйкозаноиды влияют и на пролиферацию Т-клеток этих рыб. На синтез эйкозаноидов у рыб может влиять содержание липидов в корме, и важно оптимально подбирать его при разработке методик вакцинации; этот вопрос активно изучается в настоящее время.

Не специфичные к антигенам молекулы

У позвоночных хорошо развиты классический и альтернативный пути активации комплемента

Бесчелюстные обладают антителонезависимыми комплемент-подобными белками. У миксин они гомологичны компонентам СЗ, С4 и С5 комплемента млекопитающих и действуют как опсони-ны; на фагоцитарных лейкоцитах обнаружен специфичный к ним рецептор. У представителей всех других классов позвоночных имеются как классический, так и альтернативный механизмы активации комплемента.

У карпа обнаружены компоненты комплемента CI—С9, а также факторы В и D. Установлена значительная гомология генов СЗ у Xenopusи млекопитающих. У бесхвостых амфибий охарактеризованы также компоненты комплемента Clq, С4, С5, лизирующий мембрану комплекса фактор В. Компоненты комплемента рыб и ам-, что и соответствующие белки млекопитающих. Разумеется, температурный диапазон для активности комплемента у пойкилотермных животных значительно шире; она сохраняется и при 4 °С. В то же время и теп-, ловая инактивация может происходить при более низкой температуре. У Xenopus, например, активность комплемента полностью исчезает через 40 мин инкубации при 45 °С. Для определения антител зрелых амфибий по гемолизу invitro можно использовать комплемент морской евин-, ки. Для большинства же рыб, а также головастиков подходит комплемент только от тех же или о4 близких видов.

У низших позвоночных имеются цитокины, функционально сходные с цитокинами млекопитающих

Изучение цитокинов и особенно их рецепторов у низших позвоночных существенно отстает от ус-1 пешных молекулярных исследований в области эволюции иммуноглобулинов, ТкР и МНС. Однако биологическими методами установлено, что определенные группы цитокинов присутствуют jlмногих классов позвоночных. К таким цитоки-нам относятся интерлейкины, интерфероны, фактор некроза опухолей, колониестимулирующие факторы и хемокины.

Например, из супернатантов культур стимулированных Т-лимфоцитов костных рыб, хвостатых и бесхвостых амфибий, змей и курицы выделены факторы роста Т-клеток, стимулирующие пролиферацию Т-лимфобластов invitro. Очищенный ФРТк Xenopusпредставляет собой белок с молекулярной массой 16 кДа, обладающий биохимическим и функциональным сходством с ИЛ-2 млекопитающих. Ген этого «ИЛ-2» и его рецепторы


8-09-2015, 23:19


Страницы: 1 2 3
Разделы сайта