Электрическое поле - взаимодействие зарядов

По материалам книги "Детская энциклопедия"

Все окружающие нас предметы, растения, животные, несмотря на крайнее разнообразие, построены примерно лишь из 90 видов мельчайших частиц - атомов. Это замечательное единство природы простирается еще дальше. Все атомы, в свою очередь, построены из еще более мелких частиц, называемых элементарными. Число их видов еще меньше. В состав атома, в основном, входят электроны, протоны и нейтроны. Элементарные частицы оказывают друг на друга определенные воздействия. Существование определенных сил между элементарными частицами приводит к тому, что они объединяются в более или менее сложные системы - атомы различных видов. И, наконец, эти же силы взаимодействия вызывают сцепление, атомов друг с другом в веществах. Несмотря на удивительное разнообразие воздействий тел друг на друга в безграничных просторах Вселенной, на нашей планете в любом куске вещества, в живых организмах, в том числе и в организме человека, в атомах и, наконец, в атомных ядрах мы всегда встречаемся с проявлением сил тяготения, электрических, магнитных и ядерных. Учение об электричестве и магнетизме охватывает всю громадную совокупность явлений природы, для течения которых основную роль играют электромагнитные силы. Трудно, почти невозможно указать явление, не связанное с действием электромагнитных сил. Поэтому, изучение их имеет важнейшее значение. Силы всемирного тяготения играют решающую роль только в том случае, когда во взаимодействии участвуют тела космических масштабов. Эти силы управляют движением звезд, поддерживают стройный порядок в нашей солнечной системе. Они же вызывают притяжение всех тел на Земле к ее центру. При взаимодействии элементарных частиц, атомов, молекул, небольших масс вещества силы тяготения совершенно ничтожны, ими вполне можно пренебречь. Ядерные силы обеспечивают устойчивость атомного ядра. Посредством этих сил протоны и нейтроны объединяются в атомные ядра. С расстоянием ядерные силы очень быстро убывают. Вне атомного ядра они практически не сказываются. Электромагнитным силам в природе принадлежит необычайно широкая «арена деятельности». Ими определяется строение атома: электроны, обращающиеся вокруг атомного ядра, удерживаются около него благодаря действию электрических сил. Электромагнитные силы действуют и между отдельными атомами и молекулами. Силы, вызывающие объединение атомов в молекулы,- химические силы - также имеют электромагнитную природу. Таково же происхождение сил сцепления между атомами и молекулами, приводящих к образованию различных веществ. Правда, в этих случаях силы взаимодействия тоже довольно быстро убывают с расстоянием. На расстояниях, превышающих размеры атома в десять раз, они уже почти не сказываются. В атомном ядре между протонами (положительно заряженными частицами) действуют мощные силы электрического отталкивания. Именно они сообщают частицам большие скорости при разрушении ядер в реакторах атомной электростанции и при взрыве атомной бомбы. Наконец, к электромагнитным явлениям относятся свет, тепловое излучение и радиоволны. В повседневной жизни и в технике мы на каждом шагу встречаемся с различными проявлениями электромагнитных сил. Действительно, с какими силами мы имеем дело? В первую очередь это силы упругости. Благодаря силам упругости твердые тела сохраняют свою форму, а жидкие - свой объем. Эти же силы препятствуют уменьшению объема газа. Далее, силы трения и вязкости, которые тормозят движение тел, жидкостей и газов. Наконец, сила наших мышц. Все эти силы, несмотря на все свое различие, имеют общую электромагнитную природу. Общеизвестно и широчайшее применение электромагнитных явлений в технике: электрическое освещение, связь, электродвигатели, сложнейшие радиотехнические устройства, быстродействующие вычислительные машины и т. д. Наш век - это век электричества. Почему электромагнитные силы так широко распространены? Почему они столь разнообразны? Прежде всего дело в том, что все атомы в основном построены из электрически заряженных частиц: электронов и протонов. С другой стороны, эти силы гораздо значительнее сил тяготения и действуют на гораздо больших расстояниях, чем ядерные. Например, в атоме водорода электрическая сила взаимодействия между электроном и ядром в 1042 раз больше силы тяготения между ними. Разнообразие проявлений электромагнитных сил определяется фактом существования электрических зарядов двух типов: положительных и отрицательных. Отрицательный заряд несут на себе в основном легкие элементарные частицы - электроны, а положительный - в 1836 раз более тяжелые протоны. Величина электромагнитных сил зависит не только от расстояния между зарядами, как у сил тяготения, но и от состояния их движения, в частности от скорости. В этом заключается еще одна важная причина разнообразия в проявлении этих сил. Все электромагнитные явления можно объяснить действием сравнительно немногих общих законов. Теперь наш рассказ пойдет о самом главном. Что представляют собой основные законы электромагнитных явлений? Как удалось их открыть? Как с их помощью ученые объясняют различные явления природы? Как используют их для практических целей? Сотни томов посвящены исследованию электромагнитных явлений, и еще сотни будут написаны. Поэтому не удивительно, что многое в нашем кратком рассказе останется незатронутым.

Рождение науки

Мы не знаем, когда люди впервые обнаружили, что тела могут быть приведены в особое состояние - наэлектризованы. Произошло это очень давно. Впервые в VI в. до н. э. описал этот факт греческий философ Фалес Милетский. По словам ученого, ткачихи заметили способность янтаря, потертого о шерсть, притягивать к себе легкие предметы, не соприкасаясь с ними. Оказывается, подобным свойством обладает не только янтарь. Если провести несколько раз гребенкой по сухим волосам, то она начнет притягивать мелкие кусочки бумаги. Тела, приведенные в такое состояние, называют наэлектризованными. В этих простейших опытах люди впервые столкнулись с явным проявлением электрических сил. Но прошло более двух тысячелетий, прежде чем началось систематическое исследование электричества и был открыт закон взаимодействия наэлектризованных тел. Странное поведение янтаря и некоторых других предметов казалось любопытным курьезом. Ничто не говорило о том, что здесь в простейшей форме выступают законы, управляющие течением большинства явлений на Земле. Сейчас мы хорошо знаем, что происходит при электризации тела. Наиболее подвижные заряженные частицы - электроны - при трении переходят с одного тела на другое. Тело, получающее избыток электронов, заряжается отрицательно, а потерявшее электроны - положительно. Закон взаимодействия заряженных тел, покоящихся относительно друг друга, был установлен Кулоном в конце XVIII в. Очевидно, что нельзя дать общий закон взаимодействия для заряженных тел произвольных размеров и формы, так как сила взаимодействия зависит от формы и взаимного расположения тел. Размеры же тел и их взаимное расположение могут быть бесконечно разнообразными. Однако опыт показывает, что если размеры заряженных тел много меньше расстояния между ними, то сила взаимодействия не будет зависеть от формы и размера заряженных тел. Именно для этого случая и был установлен закон, имеющий общее значение. Для исследования взаимодействия зарядов Кулоном был сконструирован специальный прибор - крутильные весы.

С помощью этого прибора можно исследовать взаимодействие маленьких заряженных шариков А и. В. Шарик В закреплен неподвижно, а шарик А с помощью коромысла К подвешен на длинной упругой нити Н. Закручивая эту нить вращением головки прибора, можно уменьшать расстояние между шариками, а по углу закручивания нити судить о величине силы взаимодействия шариков. В результате этих опытов Кулон нашел, что сила электрического взаимодействия убывает обратно пропорционально квадрату расстояния, т.е. уменьшается, скажем, в четыре раза при увеличении расстояния вдвое. Кроме того, эта сила зависит от величины зарядов шариков. Это можно установить так. Коснемся шарика В (или А) другим, незаряженным шариком тех же размеров. Тогда заряды распределятся поровну и, следовательно, заряд шарика В уменьшится вдвое. Опыт показывает, что и сила взаимодействия уменьшается вдвое. Повторяя подобный прием, можно убедиться, что сила пропорциональна произведению зарядов.

Электрическое поле

Как же осуществляется взаимодействие двух зарядов? Первоначально полагали, что заряды непосредственно через пустоту действуют друг на друга. Каждый заряд на расстоянии «чувствует» присутствие другого. Это была так называемая «теория дальнодействия». Если переместить заряд В, то сила, действующая на заряд А, изменится, хотя никаких изменений с зарядом А и окружающим его пространством не произошло. Такое представление явно неудовлетворительно. Изменение силы с точки зрения «теории дальнодействия», можно воспринять только как «чудо». Правда, «чудо», подчиняющееся определенному количественному закону. Величайшей заслугой английского физика Майкла Фарадея - основоположника современных представлений об электромагнетизме-было то, что он ввел совершенно новое понятие - понятие электрического поля. Согласно его идее, заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Величина электрического поля убывает по мере удаления от заряда. На заряд А действует не сам заряд В, а созданное им поле.

Теперь не удивительно, что перемещение заряда В в новое положение меняет силу, действующую на заряда. Ведь при этом меняется поле заряда В в той точке, где расположен заряд А. Действие заряда передается в пространстве от точки к точке посредством электрического поля. В этом заключается «теория близкодействия». С ее появлением «теория дальнодействия» была оставлена.

Что же такое электрическое поле? Его существование в пространстве столь же достоверно, сколь и существование самих зарядов. Электрическое поле представляет собой особое, специфическое состояние материи. Мы не можем разъяснить, что такое поле, не рассказав, из чего оно состоит: ничего более простого, чем электрическое поле, мы не знаем, подобно тому как мы не знаем ничего более простого, чем элементарные частицы. Наше представление о том, что такое электрическое поле, образуется в результате опытного исследования свойств поля. Основное его свойство заключается в способности действовать на электрический заряд с определенной силой. По величине этой силы можно судить о величине поля. Помещая один и тот же электрический заряд в различные участки электрического поля, мы замечаем, что сила, действующая на него, будет меняться. Следовательно, величина поля в различных точках пространства будет различной. Принято характеризовать величину поля силой действующей на положительный заряд, равный единице. Эта характеристика поля называется напряженностью электрического поля. Распределение электрического поля в пространстве можно считать известным, если мы знаем напряженность поля в каждой точке. В учении об электричестве понятие поля играет основную роль. После введения представления о поле центр тяжести в исследовании электромагнитных процессов сосредоточивается уже не на изучении самих зарядов, а на изучении свойств пространства между ними, заполненного электрическим полем. В каждой точке пространства поле действует на положительный заряд с некоторой силой, имеющей определенное направление. Это направление принимается за направление поля. Силовой линией называется линия, касательная к которой в каждой точке указывает направление поля.

Электрическое поле непосредственно не действует на наши органы чувств. С этим, кстати, связаны некоторые затруднения при введении представлений о поле: ведь нелегко убедиться в реальности того, что мы непосредственно не ощущаем. Однако с помощью не очень сложного опыта мы можем сделать силовые линии «видимыми». Дело в том, что твердые продолговатые частицы гипса или другого не проводящего электричество вещества поворачиваются вдоль поля, располагаясь как раз по силовым линиям. Для полного успеха опыта нужно располагать электрической машиной, способной сообщить телам достаточно большой заряд. Чтобы силы трения не мешали частицам поворачиваться вдоль поля, их нужно поместить в жидкий изолятор, например в касторовое масло… Тела между которыми изучается иоле, расположены в ванночке с прозрачным дном. Возникающая в ванночке картина распределения силовых линий проектируется на экран с помощью объектива, двух зеркал и конденсатора.

Интересно, что электрически нейтральная в целом система из двух зарядов противоположных знаков создает в окружающем пространстве электрическое поле. Правда, в этом случае поле в основном сосредоточено между зарядами. Вне пространства между зарядами электрические силы сказываются слабо. Если при этом геометрические размеры зарядов значительно меньше расстояния между ними, то такая система называется электрическим диполем. Постоянное электрическое поле обладает одним важным свойством, позволяющим ввести еще одну величину, которая характеризует поле наряду с напряженностью. Работа, которую совершают силы электрического поля при перемещении заряда из одной точки пространства в другую, не зависит от формы выбранного пути.

Такие поля называются потенциальными. Потенциальным является поле тяготения Земли. Работа, которую надо совершить, чтобы поднять тело над Землей, не зависит от формы пути подъема, а определяется только начальным и конечным положением тела над Землей - высотой подъема. Следовательно, в электрическом поле работа при перемещении данного заряда целиком определяется характером поля и положением в пространстве начальной и конечной точек пути. В свою очередь электрическое поле вполне определено, если известна работа по перемещению единичного положительного заряда между двумя любыми точками в пространстве, занятом полем. Эта работа называется разностью потенциалов или напряжением (не путать с напряженностью!). Итак, электрическое поле можно характеризовать двумя величинами: либо заданием напряженности в каждой точке пространства, либо работой по перемещению единичного заряда между двумя любыми точками-разностью потенциалов. Напряженность - функция одной точки пространства; новая величина - разность потенциалов - функция двух точек. Обе величины однозначно связаны друг с другом так же, как работа и сила в механике. Возникает естественный вопрос: зачем вводить две характеристики поля, а не довольствоваться одной напряженностью? Тем более, что характеристика поля с помощью задания силы в каждой точке гораздо яснее и нагляднее. Все дело в том, что многие электрические явления, а главным образом величина электрического тока в цепи, зависят не от напряженности поля в какой-либо одной точке, а именно от разности потенциалов между двумя точками, например на концах проводника в случае тока. При падении тела с некоторой высоты для оценки результатов падения важно знать не силу, действующую на тело в какой-либо точке, а работу, совершенную силой тяжести на пути падения. Точно так же для определения эффекта, который может вызвать электрическое поле, чаще всего нужно знать работу, которую оно может совершить при перемещении заряда, а не силу, действующую на него в некоторой точке поля. Правда, зная величину поля в каждой точке пространства, мы всегда можем вычислить работу по перемещению заряда, но знание разности потенциалов означает, что эта работа известна. Вот почему понятие разности потенциалов (или напряжения) прочно вошло не только в науку и технику, но и в обиходную жизнь. Каждый из вас знает, что напряжение в сети городского тока является главной ее характеристикой. Это напряжение определяет текущий по электрической лампочке или по обмотке трансформатора телевизора ток и, следовательно, то количество энергии, которое поступает из сети.

Вещества в электрическом поле

В электрическом отношении все тела делятся на проводники и изоляторы (диэлектрики). Те и другие в обычном состоянии электрически нейтральны. Заряд, сообщенный изолятору, не перемещается по нему, оставаясь в том месте, куда он первоначально помещен. В проводнике же заряды могут свободно перемещаться под влиянием электрического поля. (В последнее время большое значение приобрели так называемые полупроводники, но здесь мы о них говорить не будем: им посвящена специальная статья.). Такое различие в поведении вызвано особенностями строения проводников и диэлектриков. Диэлектрики состоят из отдельных нейтральных атомов или молекул. Проводники (к ним относятся все металлы) построены иначе. Атомы металла, образуя кристаллическую решетку, теряют «внешние», более удаленные от ядра и, следовательно, слабо с ним связанные электроны. Эти электроны перестают принадлежать определенным атомам и становятся «собственностью» всего куска металла в целом. Такие электроны называют «свободными», так как они могут перемещаться внутри металла. Атомы, лишенные части электронов и составляющие остов кристаллической решетки, называются ионами. Рассмотрим, например, металл литий. Атом лития имеет положительно заряженное ядро, вокруг которого совершают сложные движения три электрона. Когда литий находится в твердом состоянии, то два электрона каждого атома продолжают обращаться вокруг ядра, а третий электрон может, оторвавшись от атома, перемещаться внутри металла. Наличие свободных электронов и определяет все особенности металлов: способность хорошо проводить электрический ток, большую теплопроводность и т. д. Простой опыт позволяет выяснить, как при отсутствии электрического тока распределяется по проводнику сообщенный ему заряд. Для этого достаточно прикрепить к заряженной проволочной сетке, свернутой в виде цилиндра, тонкие полоски станиоля. Листочки, расположенные на внутренней поверхности сетки, останутся неподвижными, а прикрепленные к внешней поверхности - оттолкнутся от нее.

Следовательно, электрический заряд имеется лишь на внешней поверхности сетки и заряжает только внешние листочки. Это и вызывает их отклонение на некоторый угол. На внутренней поверхности сетки, очевидно, зарядов нет. Этот факт является совершенно общим. Электрический заряд располагается на внешней поверхности проводника. Получить заряд на внутренней поверхности проводника при отсутствии токов в нем нельзя. Причину этого понять нетрудно. Одноименные заряды, отталкиваясь и стремясь как можно дальше уйти друг от друга, располагаются на внешней поверхности проводника. Это правило справедливо независимо от того, какая причина вызывает появление заряда. Если поместить металлическое тело в постоянное (не меняющееся с течением времени) электрическое поле, на его поверхности возникают так называемые индукционные заряды, но внутри проводника заряд по-прежнему остается равным нулю. При этом и само электрическое поле не проникает внутрь проводника. Только в первый момент, при внесении проводника в


29-04-2015, 05:12


Страницы: 1 2 3
Разделы сайта