.
Николай Чичигин
Целью данной работы является указать на причины, которые привели к кризису современную науку.
Для полноты восприятия поставленных вопросов лицами, весьма удаленными от точных наук, текст изложен подробно в доступной популярной форме.
Современные данные о механическом движении тел носят некоторое отличие от тех данных о механическом движении тел, которые имели место среди просвещенного населения 300 лет назад.
Противоречие этих данных и привело к кризису в современной науке.
И в этом нет ничего необычного. Все это предопределено законами развития, которые предполагают, что со временем, устаревшие, противоречащие действительности, аксиомы и правила, определяющие действия исследователей изучаемых дисциплин, подлежат коррекции, а иногда и замене новыми аксиомами и правилами, которые более точно, на основе современных уточненных данных характеризуют интересующий предмет.
Необычным является то, что представители РАН, не смотря на мои неоднократные обращения: и непосредственно в учреждения РАН, и к правительству РФ, и даже к президентам РФ, не желают замечать этих противоречий в данных о механическом движении, и тем более не желают проводить коррекцию тех постулатов, которые были заложены в фундамент современной физики более 300 лет назад.
Как известно, и на что я всегда стараюсь обратить внимание моих оппонентов, основы динамики движения тел и основы дифференцирования (на чем основан современный мат. анализ) закладывались почти в одно и то же время, и все это не противоречило, а наоборот поддерживало друг друга.
Те некоторые аксиомы динамики движения тел плавно переходили в аксиомы дифференцирования, а затем с помощью математического анализа устанавливались новые законы движения тел.
И я вновь хочу обратить внимание, что я ни в коем случае не хочу принизить значение работ основоположников современной физики, т.к. на тот момент времени эти работы были величайшим рывком вперед. Но с того момента времени появилось так много новых данных о механическом движении, что основные аксиомы современной физики требуют незамедлительной коррекции/
Неточность определений основных понятий в современной науке провоцирует возникновение конфликтных ситуаций, переходящих порой в курьезы.
Так, например, неточность определения, что является прямой линией, привело к дилемме, какая линия, соединяющая две точки пространства, ближе к истине – дуга окружности или, стягивающая эту дугу, хорда, которая, при более тщательном рассмотрении, может также оказаться дугой окружности значительно большего радиуса, чем радиус окружности первоначальной дуги и т.д.? Все зависит от степени точности измерений инструмента, которым пользуются исследователи.
В данном случае конфликт привел к возникновению геометрической системы Н.И. Лобачевского, противопоставленной геометрической системе Евклида.
И если в геометрии Евклида через точку А проходит только одна прямая, лежащая в одной плоскости с данной прямой ВС и не пересекающая ее, то в геометрической системе Лобачевского таких прямых бесчисленное множество.
И никого не смущает, можно ли называть параллельными прямыми прямые, бесконечное множество которых пересекается в точке А. Ведь в геометрии Евклида это является главным признаком не параллельности прямых.
И хотя в геометрии Н.И. Лобачевского этот курьез о параллельности ярко выражен, его стараются не замечать, потому что постоянного конфликта между геометрическими системами не наблюдается, т.к. в условиях обычного опыта геометрия Евклида считается вполне пригодной, а поэтому, зная о существовании геометрии Лобачевского, принимают все-таки геометрию Евклида, т.е. кризиса в науке не наступило и геометрия продолжала благотворно воздействовать на развитие науки в целом.
Но вот другой не явно выраженный курьез, на который так же до сих пор не обращают внимания, привел современную науку к глубочайшему кризису.
И вопрос-то, казалось бы, совсем пустячный. Всего лишь в том, что первично и является важнейшим в определении массы тела - инертность тела или количество вещества тела?
Но вот это непонимание различия в определении массы до сих пор является причиной возникновения конфликтных ситуаций в науке.
И хотя изначально считается, что масса тела является количественной мерой инертности тела, а количество вещества тела прямо пропорционально инертности этого тела, это определение принимается и понимается так. Масса тела является количественной мерой вещества этого тела, т.е. слово ИНЕРТНОСТЬ из подсознания исчезает, а отсюда возникают такие непостижимые законы и правила, которые удаляют науку от действительности.
И Ньютон великий физик, был в тоже время не менее великим математиком и хотел построить физику по образу и подобию геометрии (т.е. математическим путем вывести теоремы и правила для физики). И хотя формулировка, да и сам первый закон Ньютона, не соответствует действительности, Ньютон вынужден был пойти на этот компромисс (может быть и не совсем осознано),т.к. иначе просто было невозможно создать физику, как точную науку, где законы и правила создаются и доказываются математическим путем. Ведь до сих пор решение задачи о взаимодействии трех тел практически не найдено.
Поэтому, для упрощения и для получения более – менее близких к действительности результатов, всегда рассматривается взаимодействие между телами не более двух, не учитывая одновременного взаимодействия этих исследуемых тел с третьим телом – Землей, с которой связывается система отcчета.
Первый закон Ньютона (закон инерции) “Существуют такие системы отсчета, относительно которых поступательно движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела”.
Исходя из первого закона Ньютона создавались правила дифференцирования, положенные в основу современного математического анализа. При этом появился “Закон сохранения импульса (количества движения)” – “В замкнутой системе геометрическая сумма импульсов остается постоянной при любых взаимодействиях тел этой системы между собой”.
Математическое определение “Закона сохранения импульса”, если строго следовать правилам дифференцирования, вытекает из математического определения “Закона сохранения кинетической энергии”
Правила дифференцирования суммы гласят: -“Если функция равна сумме функций, то производная этой функции равна сумме производных слагаемых функций”.
Т.е. согласно этим правилам дифференцирования следует:
А) если площадь круга равна сумме площадей двух слагаемых кругов, то длина окружности большого круга равна сумме длин окружностей соответствующих кругов, т.к. длина окружности круга есть производная от площади этого круга.
Б) если квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов, то и сама гипотенуза равна сумме катетов данного прямоугольного треугольника.
Итак лозунг XVII века –“повсеместно внедрять методы дифференцирования, не вникая в смысл данного действия, так как понимание придет позже” – оказал и продолжает оказывать исследователям медвежью услугу.
И хотя еще Архимед говорил, что “легче найти доказательство, приобретая сначала некоторое понятие о том, что мы ищем, чем искать доказательство без всякого предварительного знания”, чисто механическое применение дифференцирования продолжается.
Уж больно легко данным методом доказывать не совсем очевидные теоремы, превращая их в аксиомы, и выдавать желаемое за действительное.
И если при открытии основных законов математического анализа, И.Ньютон и Г.В.Лейбниц смысл дифференцирования или нахождения производной определяли, как новую математическую операцию, имеющую тот же смысл, что в механике нахождение скорости, а в геометрии вычисление углового коэффициента касательной, то со временем смысл дифференцирования обобщили и получили новый вариант определения производной.
“Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю”.
Это определение позволило применять дифференцирование и к уравнениям высших степеней, не утруждая себя вникать в суть самого действия, что еще более отдалило результаты данных операций от действительности.
Решая дифференциальные уравнения, исследователи “почему-то” всегда забывают, что дифференцирование или нахождение производной основано на интуитивном понятии предельных переходов. А это предполагает, что полученные результаты имеют экстремальные значения, которые зачастую противоречат начальным условиям поставленной задачи.
Т.е. если правило дифференцирования суммы гласят, что –“если функция равна сумме функций, то и производная этой функции равна сумме производных слагаемых функций”, то данное действие возможно только в экстремальных случаях, когда все слагаемые функции, кроме одной, равны нулю, что противоречит начальным условиям поставленной задачи.
Применяя дифференцирование, как математическую операцию, чтобы избежать курьезов, подобных “Закону сохранения импульса”, нужно все-таки придерживаться пожелания Архимеда и иметь хоть какое-то представление о том, что и как требуется найти.
При нахождении производной нужно не забывать, что функция и ее первая производная всегда взаимосвязаны и находятся в одной системе измерений пространства (трехмерной или двухмерной). А нахождение второй производной заданной функции требует каких-то дополнительных объяснений. Так, например, если заданная функция и ее первая производная подразумевают изменение состояния материального тела в трехмерной системе измерений, то нахождение второй производной заданной функции требует из трехмерной системы перехода к двухмерной и без дополнительных математических операций, чтобы избежать курьезных результатов, просто не обойтись.
И исходя из того, что дифференцирование основано на интуитивном понятии предельных переходов, то например, если функция выражает изменение объема шара в зависимости от его радиуса, то первая производная этой функции выражает изменение шаровой поверхности в зависимости от радиуса.
Здесь подразумевается, что заданный максимальный объем может быть ограничен только той минимальной поверхностью, которую имеет шаровая поверхность. И нахождение второй производной функции объема шара или первой производной шаровой поверхности лишено всякого смысла. Можно, конечно, функцию площади шаровой поверхности приравнять к функции площади круга и найти производную функции площади круга, которая равна длине окружности этого круга. Но это требует не только замены величины переменной (радиуса), но и дополнительных объяснений перехода из трехмерной системы измерений к двухмерной системе измерений, если это не обговорено в начальных условиях поставленной задачи.
Решая с помощью дифференцирования поставленные задачи, нужно довольно точно определять переменные, по которым изменяются функции, чтобы производные данных функций соответствовали действительности.
Т.е. переменные функции должны точно определять геометрическое место траекторий, по которым происходит движение исследуемых тел.
Так, если функции объема шара, площади и круга выражать через переменную-диаметр, а не радиус, то производные этих функций не будут соответствовать площади шаровой поверхности шара и длине окружности круга.
Если функцию площади квадрата и объема куба выразить:
А)через сторону квадрата и ребра куба;
Б)через радиус, описанной вокруг квадрата, окружности и радиус, описанного вокруг куба, шара;
В)через радиус, вписанной в квадрат, окружности и радиус, вписанного в куб, шара;
то в данном случае переменными функций, при которых производные этих функций будут соответствовать действительности, являются радиус, вписанной в квадрат, окружности и радиус, вписанного в куб, шара.
Применение дифференцирования, ограничение области применения дифференцирования – тема для отдельного разговора и требует дополнительных более тщательных обоснований, а также требуется желание участников разговора определить истину.
А пока, применяя дифференцирование чисто механически, исследователи получают результаты, зачастую, не соответствующие действительности.
И вновь вернемся к определению массы.
Масса тела, как физическая величина, характеризующая его инертность, в силу действия закона всемирного тяготений, подразумевает, что тело, постоянно испытывая воздействие силовых гравитационных полей окружающих его тел, находится или стремится к состоянию относительного покоя (равновесия) относительно окружающих его тел. А чтобы вывести любое тело из состояния относительного покоя, нужно произвести работу по преодолению реакции инерции относительного покоя взаимодействующих силовых гравитационных полей, на что требуются определенные затраты энергии и времени. И чем больше масса тела, прямо-пропорциональная количеству вещества этого тела, тем большую работу по преодолению реакции инерции относительного покоя взаимодействующих силовых гравитационных полей нужно произвести.
А т.к. взаимодействие силовых гравитационных полей исследуемых тел, между собой, несоизмеримо с взаимодействием силовых гравитационных полей этих тел с силовым гравитационным полем основного эталонного тела (каким в данном случае является Земля), относительно которого определяются, как массы исследуемых тел, так и системы отсчета для наблюдения за исследуемыми телами, то соответственно работа по преодолению реакции инерции относительного покоя взаимодействующих силовых гравитационных полей исследуемых тел, в основном, определяется по степени взаимодействия с силовым гравитационным полем основного эталонного тела – Землей.
Количественная характеристика массы любого тела всегда предполагает, что данное тело находится в зоне действия силового гравитационного поля основного эталонного тела, относительно которого определена масса этого тела. Это эталонное тело является системой отсчета, относительно которой определяются характеристики исследуемых тел.
Если исследуемое тело переместить из одной системы отсчета основного эталонного тела (в данном случае Земли) в другие системы отсчета основных эталонных тел ((например Луны или Юпитера), массы которых меньше или больше массы Земли, то соответственно масса исследуемого тела, как мера инертности, уменьшится или увеличится, хотя структура исследуемого тела, т.е. количество вещества исследуемого тела не изменилось.
Если исследуемое тело находится вне зоны взаимодействия того или иного гравитационного поля основных эталонов тел, к которым могут быть привязаны системы отсчета, то масса этого исследуемого тела не определена и поведение его непредсказуемо.
Само определение массы, как мера инертности, уже подразумевает, что любое изменение скорости движения исследуемого материального тела в системе отсчета основного эталонного тела связано с работой по преодолению реакции инерции покоя взаимодействующих силовых гравитационных полей исследуемого и основного эталонного тел.
Следовательно, напрашивается логический вывод, что любое движение материального тела в зоне действия силового гравитационного поля другого материального тела связано с преодолением реакции инерции относительного покоя взаимодействующих силовых гравитационных полей этих материальных тел, т.е. любые взаимодействующие силовые поля материальных тел стремятся к состоянию равновесия (относительного покоя), а любое движение материального тела, противопоставленное этому стремлению силовых полей к состоянию относительного покоя, связано с преодолением реакции инерции относительного покоя взаимодействующих силовых полей, и без дополнительной подпитки кинетической энергией извне движущегося материального тела, движение данного тела будет затухающим. Что и подтверждено соответствующими опытами.
Время затухания движения прямо пропорционально массе (величине силового гравитационного поля) исследуемого тела и обратно пропорционально массе (величине силового гравитационного поля) основного эталонного тела, в системе отсчета которого происходит движение исследуемого тела.
Отсюда следует, что все планеты солнечной системы относительно Солнца, а естественные спутники этих планет относительно самих планет, движутся по нисходящей спирали в силу действия закона всемирного тяготения, т.е. со временем естественные спутники планет солнечной системы неумолимо поочередно окажутся на поверхности этих планет, а сами планеты на поверхности Солнца.
Звезды относительно центра нашей Вселенной движутся по восходящей спирали. И хотя характер межзвездного взаимодействия и его величина не определены, но ясно, что межзвездное взаимодействие противоположно по направлению и значительно превосходит по мощности их гравитационное взаимодействие.
Любое движение материального тела в зоне действия силового гравитационного поля другого материального тела вызывает обоюдные приливные явления (деформации, которые прекрасно описаны в астрономии), требующие определенных затрат энергии.
Французский математик и астроном Эдуард Альберт Роши (1820-1883) с цифрами в руках доказал, что всякому спутнику, оказавшемуся ближе к своему центральному телу, чем совершенно определенное расстояние, грозит неизбежная опасность “развалиться” на составные части под влиянием тяготения планеты.
Величина гравитационного взаимодействия тел пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. И если в одних случаях мощность данного взаимодействия достигает такой величины, что заставляет одно из тел “развалиться” на части, то в других случаях мощности этого взаимодействия незначительны, но деформации тел, вызванные этим взаимодействием, хотя и незначительные, но носят все-таки остаточный характер. т.е. происходит своеобразная механическая запись (подобная записи на грампластинке) на взаимодействующих телах. И при определенных условиях эта запись может воспроизводиться, что иногда и наблюдается.
Т.е. такие науки как астрология, уфология, которые официальная наука не признает и считает шарлатанством, относительно взаимодействия материальных тел гораздо ближе находятся к действительности, чем сама официальная наука, где главным и неоспоримым инструментом является математический анализ, основанный на не совсем точных, а порой и ложных постулатах.
Силовое гравитационное поле Земли определяет инертность и массу, как меру инертности, всех материальных тел, которые находятся в зоне действия этого гравитационного поля Земли. Все материальные тела, находящиеся в зоне действия гравитационного поля Земли, находятся или стремятся к состоянию относительного покоя (равновесия) относительно центра массы Земли.
Все эти материальные тела так или иначе входят в общую количественную величину массы Земли.
Любое движение материального тела в гравитационном поле Земли, противопоставленное этому стремлению взаимодействия к состоянию равновесия, требует затрат энергии и без дополнительной подпитки извне кинетической энергией движущемуся телу является затухающим.
Время затухания пропорционально квадрату начальной скорости движения тела и массе этого тела.
Гравитационное поле Земли инерционно. Инерционность гравитационного поля Земли определяет ускорение свободного падения тел относительно Земли, которое учитывается при любых видах взаимодействия материальных тел в зоне действия гравитационного поля Земли.
Инерционность гравитационного поля Земли определяет движение по параболе артиллерийских снарядов и любых предметов, брошенных под углом к горизонту, а также движение искусственных спутников Земли по орбите.
И вообще инерционность гравитационного поля Земли определяет движение любого материального тела, находящегося в зоне действия гравитационного поля Земли.
Инерционность гравитационного поля Земли – это как бы невидимая механическая связь с взаимодействующими телами, которая и притягивает эти тела к Земле и в то же время как бы и поддерживает их в пространстве, во время свободного падения, не давая им упасть мгновенно на поверхность Земли.
За счет инерционности гравитационного поля наблюдаются гироскопические эффекты, за счет инерционности гравитационного поля происходит работа многих механизмов, но проявления инерционности гравитационного поля Земли, зачастую, приписываются работе сил трения.
Гравитационное поле Земли и его инерционность ориентируют все тела в близлежащем пространстве и на самой поверхности Земли относительно центра Земли.
Благодаря инерционности гравитационного поля Земли, можно одновременно использовать активную и реактивную составляющие энергии рабочего тела в электродвигателях, в газовых и водяных турбинах и т.д.
Очень хорошо наличие инерционности гравитационного поля Земли
29-04-2015, 03:04