3. Информационная концепция фермент-субстратных взаимодействий. Длинная полипептидная цепь при построении любого белка оказывается как бы застёгнутой между отдельными аминокислотами и фрагментами цепи по матричному комплементарному типу. При этом относительно слабые многоточечные информационные взаимодействия, обусловленные многочисленнными боковыми R-группами аминокислот, становятся с одной стороны, достаточно прочными для стабилизации нативной конформации белка, а с другой – достаточно лабильными для участия их в формировании биологических функций. Оказавшиеся на поверхностных участках многочисленные боковые R-группы организуются в локальные или поверхностные биохимические матрицы, которые служат для информационной коммуникации белка с другими молекулами клетки. Белок строится на основе генетического кода, с использованием химических и стереохимических принципов записи информации, а это уже является достаточным условием для того, чтобы предложить и рассмотреть в данной статье информационную концепцию функционального поведения белковой молекулы. Ясно, что белки клетки, как носители информации в виде многочисленных элементарных сигналов боковых групп, являются уже не столько средствами хранения этой информации, сколько средствами её реализации и воплощения. В различных ситуациях связующим звеном между управляющей системой и управляемым процессом в живой клетке служат рецепторы информации – активные центры (или другие коммуникационные сигналы) и исполнительные органы и механизмы ферментов или других функциональных белков. Работа биологических рецепторов только в некоторой степени напоминает работу датчиков информации, которые используются в технических системах. Биологические рецепторы, например, ферментов сами осуществляют поиск, приём и рецепцию субстратной информации, что, по своей сути, является актом запрограммированного поиска объекта управления (молекулы субстрата), с “запросом” его информации. Нативная макромолекула белка вне информационного воздействия находится в исходном равновесном состоянии. Каталитический центр фермента становится активным и готовым к выполнению команды управления лишь с момента рецепции молекулы подлинного субстрата. Рецепция информации осуществляется активным центром фермента за счет полного соответствия его адресного и каталитического кодов химическим кодовым группам субстрата, и благодаря их комплементарным физико-химическим, стерическим и слабым энергетическим взаимодействиям – электростатическим, гидрофобным, водородным, вандерваальсовым и др. А для того, чтобы эти силы могли возникнуть и действовать необходимо, прежде всего, стерическое, пространственное соответствие. Как считают биологи, субстрат присоединяется к активному центру фермента, который геометрически и химически представляет собой как бы негативный отпечаток молекулы субстрата, то есть – комплементарен ей. А с информационной точки зрения – это процесс рецепции кодовых компонентов и проверка их на функциональное соответствие друг другу. Поэтому рецепция и приём осведомляющей кодовой информации субстрата заканчивается подключением его молекулы, через контакт “устройства комплементарного сопряжения” активного центра, к управляющим органам и механизмам фермента. В связи с этим, взаимодействие и контакт реагирующих белков и молекул в живой системе является событием информационным, генетически обусловленным, а не случайным как, например, при взаимодействии молекул в чисто химической реакции. Таким образом, фермент-субстратные взаимодействия можно представить в виде информационной модели, основанной на стереохимических принципах и правилах молекулярной биохимической логики. Ферменты обладают своей программой “осязательного” распознавания кодовых компонентов молекул субстрата, которые комплементарны по химическим и стерическим (геометрическим) характеристикам их активному центру. Адресный код и код операции каждого типового фермента имеет свой элементарный состав и индивидуальное пространственное расположение боковых атомных группировок в активном центре, поэтому изучение стереохимических кодов белковых молекул является одной из многих задач молекулярной биологической информатики. Процесс рецепции информации подлинного субстрата, осуществляемый активным центром фермента, вызывает конформационные изменения в фермент-субстратном комплексе, при которых кодовые химические группы фермента и молекулы субстрата занимают самое оптимальное положение для прохождения каталитической операции. Важно отметить, что подключение объекта управления (молекулы субстрата), через кодовый стереохимический контакт комплементарного сопряжения, ведёт к индукции электронно-конформационного возбуждения фермент-субстратного комплекса. Присоединение подлинного субстрата сначала ведёт к переброске электронов и протонов между ферментом и молекулой субстрата, усилению электронной перестройки вдоль сопряженной системы связей, что соответственно приводит к возбуждению фермент-субстратного комплекса и, как итог, благодаря подвижным водородным связям, ведёт к динамическим конформационным сдвигам и срабатыванию “силового молекулярного привода” аппарата химического катализа фермента. Эти механизмы обеспечивают ферменту не только химическую, но и динамическую реактивность и, как результат, – автоматический режим его работы. Возникшие конформационные изменения в фермент-субстратном комплексе сопровождаются разрывом или образованием химических связей субстрата, которые происходят с высвобождением или затратой энергии. В случае необходимости эти процессы поддерживаются химической энергией в форме АТФ. Быстрому протеканию ферментативной реакции способствует высокая химическая и динамическая реактивность фермента. Высокая химическая реактивность обеспечивается режимом полифункционального катализа, когда на превращаемую химическую связь субстрата одновременно действует стереохимическая комбинация различных каталитически активных химических группировок активного центра (код операции) фермента. Интересным фактом здесь является то, что белковые молекулы стереохимическим способом решает сразу две задачи, – информационной коммуникации и полифункционального катализа. Динамическая реактивность фермента, при взаимодействии фермента с субстратом, создаёт напряжение, то есть ориентирует и фиксирует взаимодействующие химические группы таким образом, что это создаёт механическую составляющую, которая снижает энергию активации и способствует эффективному прохождению реакции. Можно считать, что, в рамках сделанных допущений, информационная модель описывает процесс управления химической реакции, ведущий к образованию продуктов реакции. Образование продуктов реакции сопровождается нарушением их физико-химического соответствия управляющим кодовым компонентам фермента, а это приводит к возврату фермента в исходное состояние. Фермент, как взведённая пружина, возвращаясь в исходное состояние, способствует выбросу продуктов реакции из активного центра. Этап фермент-субстратного взаимодействия является заключительным фрагментом биокибернетического управления, указывающим на единство процессов управления и информации в живой системе. Заметим также, что клеточная система сразу же получает информацию о ходе управляемых процессов в виде стереохимических кодов продуктов реакции, которые становятся субстратами для других ферментов или выступают в роли молекул обратной связи. Сигнальная (осведомляющая) информация субстратов служит для информирования управляющей системы о состоянии управляемых объектов, о ходе реакций, об эффективности протекающих процессов и т. д. Отличительной способностью белков клетки является их способность адекватно и сходным образом отвечать на довольно слабые информационные воздействия, достаточно мощными обратимыми конформационными изменениями. В этом, видимо, и заключается основа и сущность их биологической активности. Способность белка индуцированно возбуждаться и адекватно отвечать на сигнальную информацию изменением своей конформации является специфической особенностью. Конформация фермента меняется при взаимодействии его с субстратом, молекула гемоглобина – при соединении с кислородом, конформационные изменения обеспечивают функционирование сократительных белков и т. д. Способность ферментов и других белков клетки автоматически отвечать на слабые информационные воздействия, довольно мощными обратимыми конформационными изменениями, используется клеткой практически для всех биологических функций.
4. Ферменты и белки – это молекулярные биологические автоматы с программным управлением. В живой клетке имеется множество локально рассредоточенных объектов управления (субстратов). Для эффективного управления ими все выходные управляющие аппараты биокибернетической системы клетки должны быть “механизированы и автоматизированы”. Они должны быть снабжены системой адресной доставки, а также обладать свойствами адаптивного управления, в зависимости от наличия объектов управления, регуляторных сигналов обратной связи или физико-химических воздействий окружающей среды. Всеми этими свойствами в достаточной мере обладают ферменты и другие функциональные белки живой клетки, которые являются материальными носителями не только программных средств, но и самих управляющих органов и механизмов. В связи с этим, в молекулярно-биологической системе клетки, в качестве выходного управляющего звена используются белки и ферменты, представляющие собой молекулярные биологические автоматы или манипуляторы с программным управлением [3]. В результате стереохимического кодирования и программирования каждый белок клетки получает своё, как внешнее, так и внутреннее структурно-функциональное и информационно-программное обеспечение. К внешнему обеспечению белков могут относиться: 1) средства информационной коммуникации, – представляющие собой адресные стереохимические коды активных центров, которые состоят из пространственной комбинации аминокислотных остатков с различными R-группами; при помощи таких кодов ферменты способны к адресному поиску, комплементарному взаимодействию и связыванию молекул субстрата; 2) зона химического катализа, представляющая собой код каталитической операции активного центра фермента, который определяет характер химической реакции и состоит из стереохимической комбинации различных боковых R-групп, обладающих высокой химической реактивностью; 3) к средствам коммуникативного “общения” белка с другими молекулами клетки могут также относиться разного рода и назначения локальные или рельефные поверхностные кодовые микроматрицы. Они образованы координатной мозаикой различных, иногда весьма многочисленных боковых R-групп, находящихся в углублениях или на поверхностных участках белковой молекулы. К внутреннему обеспечению белковых молекул могут относиться: 1) средства программного обеспечения, которые скорее неявно, чем в явной форме “загружены и заложены” в аминокислотной “линейной”, а затем, и трёхмерной организации белковой молекулы; 2) средства структурной организации исполнительных органов и механизмов белка, которые обладают высокой динамической реактивностью; 3) энергетические средства макромолекулы, заключенные в её химических ковалентных и нековалентных (слабых) связях, а при необходимости и в дополнительной энергии в форме АТФ. Стереохимические (пространственные) аминокислотные коды, находящиеся в белковых молекулах (и передаваемые по физическим каналам связи), по функциональному назначению могут разделяться на адресные коды, коды операций, регуляторные, информационные, структурные коды и др. Адресный код (или коды), – служит для комплементарной рецепции функционального адреса молекулы (или молекул) субстрата. При помощи адресных кодов определяется класс биохимических соединений (то есть вид молекулярной информации), тип информационного элемента или атомной группы для связывания его с активным центром. Код операции, – указывает характер химической операции (реакции) во время химических превращений. Регуляторные коды, – служат для принятия информационных сигналов обратных связей во время функционирования фермента. Информационные коды – это те локальные или поверхностные рельефные биохимические матрицы, которые служат для связывания белковой макромолекулы с её функциональными молекулярными партнёрами или партнёрами по агрегатированию. Структурные коды – это та кодовая организация химических букв в макромолекуле, которая определяет структурную организацию исполнительных органов и механизмов белковой молекулы. Такое стереохимическое кодовое разделение сигналов позволяет белку динамически и информационно взаимодействовать с различными молекулярными партнёрами: с транспортными молекулами, с коферментами, с мембранами клетки, с АТФ, с регуляторными молекулами, с партнёрами по агрегатированию и т. д. В связи с этим, процесс описания конкретного функционального алгоритма белковой молекулы на языке “стереохимических кодовых команд” можно было бы назвать – “программированием в стереохимических кодах”. Целью стереохимического кодирования белковых макромолекул является передача адресных информационных сообщений с кодовым разделением различных по своему назначению сигналов. Каждый функционально активный белок клетки, как молекулярный биологический программный объект, всегда состоит из данных, то есть, – функциональных биохимических программных элементов (аминокислот) и физико-химических алгоритмов, определяемых биохимической логикой их взаимодействия. При этом динамическая реактивность макромолекулы белка связана с кооперативным изменением сил притяжения и отталкивания, поэтому свободная энергия взаимодействия аминокислот в составе макромолекулы, при информационном контакте с молекулярными партнёрами, и определяет её функциональное поведение. При недостатке энергии белковые молекулы способны адресно (информационно) взаимодействовать с молекулами АТФ, которые в живой клетке выполняют роль аккумулятора химической энергии. Как мы видим, стереохимический язык живой формы материи является не только средством выражения информационных сообщений, но и средством “естественного общения” биологических молекул друг с другом. Основной целью стереохимического кодирования и программирования белковых молекул является: 1) передача в трёхмерных структурах белков различных сообщений со стереохимическим кодовым разделением сигналов; 2) программирование работы молекулярных органов и исполнительных механизмов, определяющих функции белковых молекул; 3) повышение помехоустойчивости информационных сообщений, путём применения комплементарных обратных связей, при взаимодействии биологических молекул друг с другом с помощью их биохимических матриц; 4) повышение достоверности передачи сообщений, так как ошибочное замещение одной аминокислоты на другую в любом стереохимическом коде, как правило, ведёт к “потере” биологического сигнала белковой молекулы; 5) возможность регуляторного воздействия на управляющие стереохимические коды макромолекулы фермента путем “разрешения или запрета” на прохождение управляющих команд (при помощи регуляторных молекул обратных связей); 6) экономное использование различных компартментов, каналов связи и т. д. Таким образом, стереохимический принцип кодирования и программирования функций белковых молекул – это, в первую очередь, и есть тот путь, который непосредственно ведёт от молекулярной информации к биологическим характеристикам живой формы материи. Нам до сих пор неясен и непонятен этот древнейший язык живой природы, который, по всей вероятности, является не только средством молекулярного “общения”, но и формой выражения биологической сущности живой материи. Только таким способом программируется весь путь и биологическая судьба любой активной макромолекулы живой клетки. Поэтому каждый фермент или другой белок клетки становится обладателем своей сложной биологической судьбы и начинает функционировать строго в соответствии с теми обстоятельствами, в которых он находится, и в соответствии с той программой, которая химическим и стереохимическим способом загружена в его линейную и трёхмерную структуру. Многие белки программируются таким образом, чтобы они могли реализовать не только свою управляющую информацию, но и специфически могли воспринимать и реагировать на осведомляющую информацию сигнальных и регуляторных молекул. Таким образом, трёхмерные структуры белков могут обладать своими “входными и выходными” средствами обмена информацией с другими молекулами клетки. К примеру, аллостерический фермент, благодаря выходным управляющим кодовым компонентам активного центра, всегда “знает” с каким объектом управления ему следует взаимодействовать, а благодаря набору входных кодовых компонентов, которые служат для обратной связи, он способен адекватно реагировать на информационные
29-04-2015, 05:10