Лучи света тоже должны следовать геодезическим линиям в пространстве-времени. Искривленность пространства означает, что свет уже не распространяется прямолинейно. Таким образом, согласно обшей теории относительности, луч света должен изгибаться в гравитационных полях, и, например, световые конусы точек, находящихся вблизи Солнца, должны быть немного деформированы под действием массы Солнца. Это значит, что луч света от далекой звезды, проходящий рядом с Солнцем, должен отклониться на небольшой угол, и наблюдатель, находящийся на Земле, увидит эту звезду в другой точке. Конечно, если бы свет от данной звезды всегда проходил рядом с Солнцем, мы не могли бы сказать, отклоняется ли луч света или же звезда действительно находится там, где мы ее видим. Но вследствие обращения Земли все новые звезды заходят за солнечный диск, и их свет отклоняется. В результате их видимое положение относительно остальных звезд меняется. В нормальных условиях этот эффект очень труден для наблюдения, так как яркий солнечный свет не позволяет видеть звезды, находящиеся на небе рядом с Солнцем. Но такая возможность появляется во время солнечного затмения, когда Луна перекрывает солнечный свет. В 1915 г. английская экспедиция в Западной Африке, наблюдавшая там солнечное затмение, показала, что свет действительно отклоняется Солнцем так, как и предсказывала теория. Впоследствии отклонение света Солнцем было точно подтверждено целым рядом наблюдений. Еще одно предсказание общей теории относительности состоит в том, что вблизи массивного тела типа Земли время должно течь медленнее. Это следует из того, что должно выполняться определенное соотношение между энергией света и его частотой (т. с. числом световых волн в секунду): чем больше энергия, тем выше частота. Если свет распространяется вверх в гравитационном поле Земли, то он теряет энергию, а потому его частота уменьшается. (Это означает, что увеличивается интервал времени между гребнями двух соседних волн). Наблюдателю, расположенному на большой высоте, должно казаться, что внизу все происходит медленнее. Это предсказание было проверено в 1962 г. с помощью двух очень точных часов, расположенных: одни на самом верху водонапорной башни, а вторые – у ее подножья. Оказалось, что нижние часы, которые были ближе к Земле, в точном соответствии с общей теорией относительности шли медленнее. Разница в ходе часов на разной высоте над поверхностью Земли приобрела сейчас огромное практическое значение в связи с появлением очень точных навигационных систем, работающих на сигналах со спутников. Если не принимать во внимание предсказаний общей теории относительности, то координаты будут рассчитаны с ошибкой в несколько километров!
Законы движения Ньютона покончили с абсолютным положением в пространстве. Теория относительности привела нас к необходимости введения понятия «Собственное время наблюдателя».
Современное состояние проблемы времени
Время «самое распространенное свойство окружающего нас мира. Трудно найти объект или понятие, не имеющие отношения ко времени» [2]. Вместе с тем вряд ли «имеется другое такое понятие, в отношении которого сосуществовали бы столь различные и даже взаимоисключающие представления. Вот некоторые из распространенных представлений о времени.
Время не существует; оно есть только субъективное ощущение.
Время - объективная реальность, являющаяся, как и пространство, формой бытия материи.
Время - лишь удобный способ описания движения тел и происходящих в мире процессов.
Время - причина движения тел и протекающих процессов.
Время абсолютно, оно ни от чего не зависит и одинаково для всех систем.
Время относительно, оно свое для каждой системы.
Время - мера строго повторяемых (циклических) процессов, которые реализуются только в неизменяющихся системах.
Время - мера изменчивости систем; в неизменяющихся системах время не течет.
Время обратимо, поскольку базисные уравнения физики не меняются при изменении знака времени).
Время существенно необратимо, ибо весь человеческий опыт свидетельствует, что будущее отличается от прошлого, и что кинофильм, пущенный в обратную сторону, во многом не реалистичен.
Время может быть математически описано как скалярная переменная величина, одинаковым образом меняющаяся во всех точках трехмерного физического пространства.
Время может быть описано как одно из направлений в четырехмерном многообразии, именуемом пространством-временем, причем это направление, вообще говоря, свое для каждой физической системы.
В общем, ситуация вокруг проблемы времени ныне остается такой же, какой она была еще несколько веков назад» [3]
Большинство известных представлений о времени укладываются в две принципиально разные концепции времени - реляционную и субстанциональную [4, 5, 6]. Различаются эти концепции трактовкой взаимоотношения времени и физической материи ( к последней относятся вещество и физические поля). Согласно реляционной концепции в природе нет никакого времени самого по себе, а время - это всего лишь отношение или система отношений между физическими событиями, иначе говоря, время есть специфическое проявление свойств физических тел и происходящих с ними изменений. Другая концепция - субстанциональная - наоборот, предполагает, что время представляет собой самостоятельное явление природы, как бы особого рода субстанцию, существующую наряду с пространством, веществом и физическими полями. Реляционная концепция времени обычно связывается с именами Аристотеля, Г.В.Лейбница, А.Эйнштейна. Наиболее яркими выразителями субстанциональной концепции времени являются Демокрит и Ньютон. А из современных ученых - Н.А.Козырев» [3]. Обе эти концепций времени подробно проанализированы в работах[4, 5]. Авторы обеих работ приходят к одним и тем же выводам:
1. Ни одна из рассмотренных двух концепций не имеет преимущества перед другой.
2. Обе концепция времени нуждаются в дальнейшей проработке.
Сложность построения физической теории времени на основе реляционной концепции состоит в следующем.
Реляционная концепция предполагает, что время полностью определяется физической материей. Ввиду этого в рамках такой теории время должно выражаться через какие-то характеристики процессов, происходящих в физических системах. «Но тогда само понятие процесса должно быть определено до введения представления о времени и независимо от него. Однако, трудно представить себе, как можно сформулировать определение процесса без обращения к понятию времени, в частности, без использования таких характеристик процесса, как его продолжительность или скорость его протекания. Заметим, что аналогичная ситуация возникла бы и при разработке реляционной концепции пространства. Тут потребовалось бы сформулировать определение физической системы до введения представления о пространстве, то есть без упоминания даже такой простейшей характеристики системы, как ее пространственный размер. Совершенно не ясно, как это можно сделать.
Существенное затруднение при построении физической теории времени на базе субстанциональной концепции заключается в необходимости ответить на вопрос: "Каким образом временная субстанция передает свои свойства физической материи?" [3].
В работе А.М. Заславского - «Загадочное и бессмысленное. О моделях времени в естествознании» - анализируются некоторые современные модели времени. «Когда мы хотим исследовать какие – то сущности или процессы, - пишет А.М. Заславский - то начинаем с построения соответствующей модели. Это может быть как вполне осязаемая, так и чисто умозрительная конструкция. Но в том или ином виде модель присутствует всегда, заменяя собой сложный и часто недоступный для восприятия объект исследовании [7].
Всю совокупность известных физических теорий А.М. Заславский рассматривает как систему отношений, описывающих геометрическую модель реальности. Он считает, что эта модель «оказалось чрезвычайно эффективной при выводе физических законов и установлении связей между ними. Однако попытки использовать ее для установления связи между физическими законами и феноменологическими свойствами времени нельзя назвать успешными» [7].
Геометрической моделью времени, согласно ему, продолжительность во времени отождествляется «с протяжённостью в пространстве. Она базируется на предположении о существовании объектов, чьё состояние в пространстве отображает ход времени так, что равным промежуткам времени соответствуют равные отрезки траекторий этих объектов или их элементов. Такими объектами для Галилея и Ньютона были абстрактные тела, движущиеся по инерции при абсолютном отсутствии взаимодействий с другими телами. В теории относительности в качестве такого объекта рассматривается квант света – фотон…
Законы движения классической, релятивистской и квантовой физики инвариантны к изменению направления времени. Но это не отвечает нашей интуиции и поэтому вызывает чувство незавершённости физических теорий. Действительно, интуиция отвергает, как немыслимый, эксперимент, в котором разбившаяся тарелка чудесным образом возникает из впрыгнувших на стол и соединившихся осколков. Интуиция настаивает на том, что время это необратимый поток событий, а геометрическая модель лишь отображает интенсивность этого потока в пространстве…
Характерным для геометрической модели является такое представление о природе реальности, при котором физические законы рассматриваются как следствия законов геометрии и опыта, устанавливающих взаимные отношения координат различных объектов и их производных в один и тот же момент времени. Казалось бы, совершенно естественной в этой системе взглядов выглядит гипотеза о том, что этими же законами объясняется та необратимая всеобщая упорядоченность событий, которую Эддингтон назвал стрелой времени» [7].
Далее А.М. Заславский рассматривает ряд современных моделей времени:
Модель С. Хокинга
Стивен Хокинг исследует противоречие между инвариантностью к направлению времени законов науки и огромным психологическим различием между прошлым и будущим в нашем сознании. С. Хокинг, как указывалось в параграфе 1, рассматривает три стрелы времени: термодинамическую, проявляющуюся в увеличении энтропии, космологическую, проявляющуюся в том, что вселенная расширяется, а не сжимается и психологическую, вследствие которой мы помним прошлое, а не будущее…
Теория, разработанная Хокингом, предсказывает неизменное направление термодинамической стрелы, как в фазе расширения, так и в фазе сжатия. Но расширение характеризуется «сильной стрелой». Напротив, в фазе сжатия беспорядок увеличивается очень мало.
Модель Р. Пенроуза
Роджер Пенроуз считает, что необратимость времени объясняется временной асимметрией процедуры редукции волновой функции… С точки зрения Р. Пенроуза редукция волновой функции происходит по объективным причинам, не зависящим от сознания наблюдателя.
Модель Пенроуза … базируется на трёх основных положениях. 1. Редукция волновой функции применима только в направлении от прошлого к будущему. Эта процедура пригодна только для расчёта вероятностей будущих событий исходя из прошлых событий.
2. Процедура редукции не зависит от присутствия наблюдателя и его сознания.
3. Редукция волновой функции происходит вследствие такого искривления пространства-времени, при котором неизбежно нарушаются правила квантовой линейной суперпозиции…
Пенроуз считает, что для описания квантовых процессов в искривлённом пространстве-времени не годится математический аппарат линейной квантовой механики.
Модель Пенроуза, также как и модель Хокинга, по мнению А.М. Заславского, «обходит стороной вопрос о причинной связи законов движения с упорядоченностью моментов времени. Главной задачей этих моделей является анализ референтов времени» [7]. Референт времени, согласно А.П. Левичу, представляет собой «природный процесс, явление, «носитель», свойства которого могут быть отождествлены или корреспондированы со свойствами, приписываемыми феномену времени» [8].
Модель И. Пригожина
Решение парадокса времени Илья Пригожин видит в существовании динамического хаоса, как на макро, так и на микроскопическом уровне. Все динамические системы, согласно его представлениям, делятся на два больших класса – обратимые, которые могут быть описаны в терминах траекторий, и необратимые (хаотические), которым соответствует несводимое описание. Несводимость описания хаотических систем означает невозможность перехода от вероятностного описания их поведения к детерминированному описанию в терминах траекторий.
И.Пригожин предложил феноменологическая модель времени, «содержание которой очень образно передаёт аналогия с переохлаждённой жидкостью на пороге перехода в кристаллическое состояние. В этой жидкости неопределённо долго можно наблюдать флуктуации, приводящие к образованию крохотных кристаллов, которые, то появляются, то снова растворяются. Но вот образуется крупный кристалл, система теряет устойчивость и происходит необратимое событие: кристаллизация всей жидкости. В состоянии равновесия макроскопического эффекта - стрелы времени – не существует. Она проявляется с процессом, который приводит к необратимому образованию кристалла. «Аналогично, очень малая вероятность критической флуктуации в вакууме Минковского указывает на то, что стрела времени уже существует в нём в латентной, потенциальной форме, но проявляется, только когда неустойчивость приводит к рождению новой Вселенной. В этом смысле время предшествует существованию Вселенной» [7].
Обратимый динамический процесс не может претендовать на роль референта времени из-за отсутствия в нём требуемой асимметрии. Однако неустойчивый необратимый процесс, хотя и обладает требуемой асимметрией, не может быть использован для измерения времени. Его состояния не могут быть использованы в качестве численных значений моментов времени вследствие экспоненциального расхождения любых, сколь угодно близких вначале, траекторий и их бесконечного перепутывания, как это имеет место в странных аттракторах. «Чтобы вопросы, задаваемые нами системе, имели физический смысл, они должны допускать устойчивые, т.е. грубые, ответы. Именно поэтому в подобных ситуациях мы вынуждены обращаться к статистическому описанию, остающемуся в силе при произвольных временах». Но для получения статистического описания требуются эксперименты и устойчивые измерения во времени. Не существует статистического описания чего-либо вне времени или в один единственный момент времени. Иными словами, несводимое описание неустойчивого динамического процесса уже подчинено временному определению статистического метода. Во всех случаях это временное определение достигается с помощью устойчивых обратимых периодических процессов, которые сами по себе требуют изначального определения во времени.
Таким образом, динамические процессы не могут быть определены вне времени. Поэтому стрела времени не может быть следствием физических законов, описывающих динамику классических, релятивистских или квантовых систем» [7].
В работе А.М. Заславского рассматриваются и другие модели времени. Однако, вышеизложенное дает нам достаточно полное представление о современном состоянии проблемы времени.
Списоклитературы
1.Stephen W. Howking A brief history of time. – London. – 1988 . 74 Хокинг С. Краткая история времени: От большого взрыва до черных дыр. / Пер. с англ. Н. Смородинской. — СПб.: Амфора, 2001. – 201 с.
2. Коганов А.В. Время как объект науки.// «Мир измерений».- № 2-3. – М.: – 2002.- С. 18-22. – НИИСИ РАН.
3. Шихобалов Л.С. Время – загадка мироздания. // New Energy Technologies. - № 3. - 2001.- P . 3 – 5.
4. Молчанов Ю.Б. Проблема времени в современной науке. – М.: - Наука, - 1990. – 136 с.
5. Шихобалов Л.С. Время: субстанция или реляция? // Вестник Санкт-Петербургского отделения Российской Академии естественных наук. – 1997 . - № 1. – С. 369 – 377
6. Левич А.П. Время как изменчивость естественных систем: способы количественного описания изменений и порождение изменений субстанциональными потоками // Конструкция времени в естествознании: на пути пониманию феномена времени. Часть 1. Междисциплинарные исследования.- М: - Изд-во МГУ. – 1996, - С. 235-288.
7.Заславский А.М. Загадочное и бессмысленное. О моделях времени в естествознании. www.chronos.msu/RREPORTS/zaslavsky_zagadoch.html
8. Левич А.П.. Природные референты «течения» времени: становление как изменение количества субстанции. // Философия науки. - Вып. 6.- М.: - Изд-во ИФ РАН. – С. 48-53.
29-04-2015, 05:14