О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности

событием, которое имело место «неизвестно где и в чем». Отказ от нее, однако, не отрицает возможности горячего состояния вещества на ранних этапах его эволюции и другие результаты в исследовании эволюции Вселенной, полученные космологией. Он требует лишь некоторого переосмысления этих результатов. К тому же, этот отказ приводит лишь к метрическим трансформациям ПВК, которые не влияют на последовательность причин и следствий в протекании эволюционных физических процессов.

Согласно физическим представлениям, изложенным здесь, экспоненциальное замедление всех физических процессов по используемой сейчас в космологии шкале времени предусматривается. Тем самым, экспоненциальное замедление самосжимания вещества в абсолютном пространстве Ньютона – Вейля предусматривается тоже. А это равнозначно экспоненциально быстрому расширению Вселенной в сопутствующей веществу СО. Поэтому, эти физические представления хорошо согласуются с инфляционной космологией [22], которая основывается на сценарии раздувающейся Вселенной.

Черные дыры и астрономические объекты, альтернативные им

Так как (b′)e>0, то при неотрицательных значениях функций a и b значение фотометрического радиуса не должно уменьшаться при продвижении от поверхности тела к его центру. Однако, монотонное убывание функции r(rметр) в приповерхностной зоне тоже невозможно. В случае возможности этого гравитационная сила была бы направлена изнутри идеальной жидкости к ее поверхности и не была бы уравновешена никакой другой силой по причине условно нулевого значения давления над этой поверхностью. И более того, по этой же причине физическая сингулярность не может возникнуть на поверхности жидкости, пока она не установится и во всем ее объеме. Поэтому, во внутреннем пространстве такого тела должна сформироваться сфероцилиндрическая метрика, которая гарантирует возможность распространения физической сингулярности во всем объеме тела.

Согласно зависимости для нижней границы значений разницы космологических возрастов одновременных событий в непустом пространстве любого физического тела, конечность промежутков космологического времени между одновременными событиями в сопутствующей телу СО тоже имеет место лишь при наличии сфероцилиндрической метрики внутреннего собственного пространства тела. Из всего этого следует отсутствие, как гравитации внутри такого «тела», так и радиального перепада давления в его «веществе». Ведь его элементарные частицы излучили всю свою энергию квазичастицами (ввиду равенства нулю их гамильтонианов), и поэтому, перешли из актуального состояния в виртуальное и фактически сами себя уничтожили для внешнего наблюдателя. Энергия такой «мертвой» черной дыры сконцентрирована лишь в электромагнитном излучении, которое распространяется в СО Вейля со скоростью Хаббла. И, следовательно, только «мертвая» черная дыра может соответствовать уравнениям гравитационного поля ОТО в случае неотрицательных значений функций a и b.

Рассмотрим также совместимость существования черных дыр с наличием СО Вейля. Горизонт видимости жесткого тела в его собственной СО является неподвижным. Однако, в СО Вейля он движется со скоростью света. Поэтому, вещество, которое обладает инерцией, не может находиться на этом горизонте в принципе. Между поверхностью тела и его внешним горизонтом видимости (который, как было показано ранее, является псевдогоризонтом прошлого) обязательно должен быть слой пустого пространства. Однако, любой как угодно «фотометрически» тонкий слой внешней условно пустой части собственного пространства физического тела заключает в себе всю Вселенную. То есть, не только на самом горизонте видимости сколь угодно массивного тела, но и за пределами этого горизонта в принципе не может быть любых других физических объектов. Сверхнизкая напряженность гравитационного поля, которая создается астрономическим телом со сколь угодно малой массой возле своего горизонта видимости, не препятствует самопроизвольному движению возле этого горизонта других астрономических объектов. И, следовательно, в случае «прохождения» горизонта видимости тела в абсолютном пространстве через эти астрономические объекты наблюдалось бы в собственном пространстве этого тела убегание последних от него со скоростью света. Поэтому, никакое физическое тело не может само по себе изолироваться от Вселенной сингулярной поверхностью, которая расположена в пустом пространстве или хотя бы контактирует с этим пространством.

Таким образом, согласно изложенным здесь физическим представлениям, такие гипотетические астрономические объекты как черные дыры не могут существовать в принципе. Невозможность же движения в абсолютном пространстве граничной поверхности калибровочно самосжимающегося астрономического тела со скоростью света накладывает существенное ограничение, как на значение фотометрического радиуса этой поверхности в собственном пространстве, так и на значение гравитационного радиуса тела. Так, например, у гипотетической несжимаемой идеальной жидкости, которая может сокращатся лишь при изменении скорости движения, а также в нежестких СО и в СО Вейля, во всем объеме одинаковы, как собственные значения плотности массы, так и несобственные (координатные) значения плотности энтальпии. Учитывая это можно показать, что несобственное значение скорости света на граничной поверхности такой жидкости является минимальным при максимальном значении радиуса этой поверхности, при котором в центре тяжести жидкости давление становится бесконечно большим а, следовательно, и возникает гравитационная сингулярность. Дальнейшее увеличение re а, следовательно, и увеличение массы жидкости при такой (обычной: a0=1) конфигурации ее ПВК принципиально невозможно из-за принятия отрицательных значений не только b0, но также и собственными значениями давления и плотности энтальпии. И более того, когда μ=6He2/κc4: re=rs=rc=λ–1/2=c3–1/2/He. Тем самым, собственное пространство жидкости (как внутри ее, так и снаружи) имеет сфероцилиндрическую метрику. А несобственное значение скорости света vc не только внутри жидкости, но также и в условно пустом пространстве над ней становится нулевым.

Как и во всех других решениях уравнений гравитационного поля ОТО, в этом решении интегрирование начинается с нулевого значения фотометрического радиуса тела. Поэтому, верхние слои вещества (даже когда они сколь угодно массивные) не оказывают прямого влияния на кривизну собственного пространства тела в нижних слоях вещества, в то время как нижние слои вещества непосредственно влияют на кривизну этого пространства в верхних слоях. Для гипотетической несжимаемой жидкости функция a, которая определяет кривизну ее внутреннего пространства, в точках нижних слоев жидкости совсем не зависит от наличия жидкости выше этих слоев. Ведь давление верхних слоев несжимаемой жидкости не оказывает влияния на распределение собственного значения ее плотности в нижних слоях. Это не только является парадоксальным, но и не всегда может быть физической реальностью. Верхние слои вещества, когда их масса очень большая, должны оказывать непосредственное влияние на кривизну пространства тела в нижних слоях через какую-либо интегральную характеристику. Это возможно, если в собственных пространствах чрезвычайно массивных астрономических тел физически реализуемые значения фотометрического радиуса ограничиваются не только сверху, но также и снизу. Это ограничение снизу значения фотометрического радиуса тела с сильным гравитационным полем может быть связано с существованием метрической сингулярности (1/a0=0) внутри тела. Оно имеет место при не монотонном радиальном изменении напряженности гравитационного поля в абсолютном и в сопутствующем телу пространствах.

При таком пространственном распределении напряженности гравитационного поля с уменьшением значения метрического радиального расстояния rметр фотометрический радиус r сначала уменьшается до своего минимального значения r0, а потом начинает возрастать внутри непустого собственного пространства этого тела. Физическая сингулярность (b0=0), которая всегда сопровождает метрическую сингулярность, имеет место при этом лишь в бесконечно малой окрестности поверхности с фотометрическим радиусом r0. Ввиду этого она фактически «размыта» квантовыми флуктуациями микронеоднородной структуры ПВК и, следовательно, физически не реализована. Такая «размытая» сингулярность не в состоянии исключить спорадическое взаимодействие между веществом внешней и внутренней части полого тела, благодаря возможности туннелирования формально абсолютно тонкого барьера, сформированного ею. Согласно квантово-механическим представлениям, движение вещества это – не механическое его перемещение, а постепенное изменение его пространственно-временных состояний. Поэтому то такая «размытая» сингулярная поверхность и не может быть абсолютно непреодолимым барьером также и для спорадического проникновения (квантового просачивания) вещества через нее.

Внутреннее решение уравнений ОТО для идеальной жидкости в СО Вейля

Ковариантность уравнений гравитационного поля ОТО относительно преобразований координат позволяет получить их внутреннее решение для идеальной жидкости и в СО Вейля. В этой СО ненулевые компоненты метрического тензора выражаются через параметры, имеющие следующий физический смысл. Собственное значение радиальной координаты r(R,T) определяется по собственному эталону длины в мировой точке с заданными абсолютными координатами и является тождественным фотометрическому радиусу в собственной СО жидкости. Соотношение N(R,T)=r/R определяет различие абсолютных размеров идентичных объектов вещества в разных точках евклидова мирового пространства (пространства СО Вейля) и, поэтому, характеризует метрическую (масштабную) неоднородность этого пространства для вещества. Среднестатистическое относительное значение частоты взаимодействий элементарных частиц вещества f(R,T)=NVc/c определяет различие темпов в СО Вейля протекания идентичных физических процессов в разных точках ее мирового пространства и, поэтому, характеризует физическую неоднородность мирового пространства для вещества.

Из уравнений гравитационного поля, заданных в координатах псевдоевклидова пространства Минковского СО Вейля, с учетом жесткости собственной СО идеальной жидкости, могут быть найдены зависимости координат мировых точек жидкости в СО Вейля от их координат в сопутствующей жидкости СО. Предельное минимальное значение фотометрического радиуса r0 соответствует в этих зависимостях сферической поверхности, в точках которой отсутствует напряженность гравитационного поля и выполняются следующие условия: f0=Her0/c, а: Vc0=HeR0. Значения tk и tk= tk b1/2 момента времени, в который в точке с радиусом rk (отдельно при Rk>R0 (Tk) и при Rk<R0 (Tk)) размер эталона длины откалиброван в СО Вейля по его размеру в сопутствующей жидкости СО (Rk=rk), определяются соответственно в координатном (общем для всей жидкости астрономическом) времени и в квантовом собственном времени точки с радиусом rk.

Отсутствие в СО Вейля, так называемой, «антигравитации» [27], имеющей место в собственной СО идеальной жидкости из-за ненулевого значения космологической постоянной, подтверждает полную устранимость «антигравитационного» поля преобразованием координат. Определимость значения постоянной Хаббла только значениями космологической постоянной и постоянной скорости света подтверждает обусловленность явления расширения Вселенной лишь эволюционным самосжатием вещества в абсолютном пространстве Ньютона – Вейля.

Из-за наличия в этом внутреннем решении (также как и во внешнем решении [16]) принципиальной возможности двузначности функции R(r), функция rметр(r) также может быть двузначной. И, следовательно, уравнения гравитационного поля ОТО действительно допускают возможность существования метрической сингулярности (1/a0=0) внутри физического тела. Тем самым в любые моменты космологического и собственного времени вещества они гарантируют соответствие собственных значений фотометрического радиуса r, не меньших, чем r0, всему бесконечному евклидовому пространству СО Вейля. Поэтому, ни одна область пространства СО Вейля не может соответствовать решению Шварцшильда для r<rge, когда a<0 и b<0 [7]. При этом, как во внешнем (R>R0), так и во внутреннем (R<R0) условно пустых собственных пространствах жидкости скорость объектов, которые неподвижны в СО Вейля, определяется зависимостью Хаббла.

Необычная конфигурация ПВК, при которой достигается минимум суммарной энтальпии всей идеальной жидкости

Такое сингулярное решение уравнений гравитационного поля ОТО соответствует сферически симметричному полому телу с зеркально симметричным собственным пространством и множеством центров тяжести в точках срединной сингулярной сферической поверхности, которая концентрична внешней и внутренней граничным поверхностям тела. При нулевом значении λ подобная конфигурация собственного пространства состоит из двух асимптотически евклидовых полупространств, соединенных узкой горловиной. Эта конфигурация получена Фуллером и Уилером [28, 29], исходя из геометродинамической модели массы. При ненулевом значении λ внутреннее пустое пространство массивного астрономического тела ограничено фиктивной сферой псевдогоризонта будущего. В этом внутреннем пустом пространстве, которое как бы «вывернуто на изнанку» чрезвычайно сильным гравитационным полем, вместо явления расширения Вселенной «наблюдается» явление сжатия «внутренней вселенной» и может сформироваться внутренняя планетная система. В собственных СО этих планет внутренняя граничная поверхность этого астрономического тела будет наблюдаться выпуклой, как и внешняя граничная поверхность. Ведь фотометрические радиусы орбит планет будут больше фотометрического радиуса этой поверхности. И лишь отсутствие далеких звездных систем во внутреннем пустом пространстве позволяет отличить его от внешнего пустого пространства.

Значение фотометрического радиуса в центре тяжести определяется однозначно лишь при обычной конфигурации ПВК жидкости (r0=0 при a0=1). Его принципиально невозможно определить из уравнений ОТО, если конфигурация ПВК необычная (1/a0=0). Ввиду этого необходимо согласиться со следующим утверждением Хокинга [5]: «ОТО, сама по себе (без использования дополнительных закономерностей, полученных в классической физике), не обеспечивает граничные условия в сингулярных точках для уравнений поля. И поэтому она становится «неполной» вблизи этих точек». Абсолютная устойчивость термодинамического равновесного состояния вещества, удерживаемого гравитационным полем и самосжимающегося в СО Вейля как одно целое, может гарантироваться в случае неизменности энтропии и внешнего давления лишь при выполнении следующего условия. Пространственное распределение функции r(rметр) должно соответствовать минимуму лагранжиана энтальпии всего вещества жидкого тела в СО Вейля. Значение этого лагранжиана равно энтальпии жидкости в сопутствующей ей СО и определяется зависимостью, учитывающей непосредственное влияние верхних и нижних слоев вещества на значения функций a(r,r0) и b(r,r0). Пространственные распределения несобственного (координатного) значения плотности энтальпии σ(r,r0) и собственного значения плотности массы μ(r,r0) находятся совместным решением уравнений гравитационного поля ОТО и уравнений термодинамического состояния вещества.

Когда количество вещества не превышает своего критического значения, функция, устанавливающая зависимость интегрального несобственного значения энтальпии всего вещества от значений re и r0, не имеет минимума. При этом нулевое значение фотометрического радиуса соответствует наименьшему значению этой функции. И, следовательно, астрономическое тело может быть только сплошным шарообразным. Когда же масса астрономического тела близка к критическому значению, сплошная сферически симметричная топологическая форма стает неустойчивой даже к малым возмущениям напряженности гравитационного поля. Это может привести к ее трансформации в полую сферически симметричную топологическую форму, которая соответствует минимуму энтальпии тела и, поэтому, является гравитационно абсолютно устойчивой. Ввиду уменьшения значения re, такое катастрофическое изменение топологии тела может рассматриваться как релятивистский гравитационный коллапс вещества. Однако, в отличие от черной дыры, это катастрофическое изменение не сопровождается самозамыканием вещества внутри сферы физической сингулярности.

Такое полое тело, которое содержит затерянный мир Фуллера-Уилера, на завершающей стадии своей эволюции альтернативно гипотетической черной дыре. Это чрезвычайно массивная полая нейтронная звезда, которая не отличается от черной дыры по внешним наблюдаемым признакам и является результатом плавного остывания квазара. Чрезвычайно большие значения энергии и массы квазаров указывают на обладание и ими полой топологической формой. Быстрая потеря энергии квазарами из-за чрезвычайно высокой их светимости делает их активную жизнь непродолжительной. На настоящий момент космологического времени все они, очевидно, перешли на новые формы своего существования. На это указывают очень большие расстояния до квазаров. Однако, лишь небольшая часть квазаров преобразовалась в полые нейтронные звезды. Большинство из них постепенно превратились в звезды, которые в дальнейшем не могут сохранить устойчивость полой топологической формы из-за большой потери энергии. Как только их энергия достигает критического значения, они преобразовываются в сверхновые звезды. После сбрасывания сверхновой внешнего слоя своего вещества, которое является избыточным для обычной (не полой) топологической формы звезды, ее эволюция продолжается уже с новой конфигурацией собственного ПВК. С учетом достижения минимума собственного значения плотности массы жидкости на ее граничной поверхности можно найти нижнюю границу интегрального собственного значения массы всего полого жидкого тела. Согласно выражению, устанавливающему эту границу, когда значение соотношения re/r0 сколь угодно большое, полое сферическое тело может обладать сколь угодно большой массой.

У несжимаемой идеальной жидкости значение минимального фотометрического радиуса является неопределенным. Это указывает на вырожденность такого состояния для идеальной жидкости. Поэтому, равновесное состояние несжимаемой жидкости будет абсолютно устойчивым при любых значениях r0. И, следовательно, сколь угодно большое количество несжимаемой жидкости может содержаться внутри полого тела, когда значение re сколь угодно малое. Это конечно физически нереально также, как нереально и само существование несжимаемой жидкости. Следовательно, такой результат может рассматриваться как еще один признак вырожденности состояния идеальной жидкости, а тем самым, и как очевидное подтверждение правильности избранного нами критерия для определения минимально возможного значения фотометрического радиуса тела при полой его топологической форме.

Выводы

Таким образом, избежание физической реализуемости космологической сингулярности в ОТО возможно. Для этого необходимо и достаточно постулировать отсчитывание космологического времени в СО Вейля и не отбрасывать (с чем согласно большинство физиков [2, 27]) в уравнениях гравитационного поля космологический λ-член. А тем самым, необходимо допустить физическую реальность бесконечно долгого калибровочного процесса самосжимания вещества в абсолютном пространстве СО Вейля.

Избежание физической реализуемости гравитационной сингулярности у чрезвычайно массивного астрономического тела также возможно – за счет «размытия» ее квантовыми флуктуациями микронеоднородной структуры ПВК. Для этого необходимо и достаточно дополнить уравнения гравитационного поля ОТО условием достижения минимума энтальпии всего вещества тела и допустить физическую реальность математически неизбежных полой топологической формы тела в СО Вейля и зеркально симметричной конфигурации его собственного пространства с как бы «вывернутым наизнанку» внутренним полупространством.

Дополнение

Обоснование возможности стабильного существования антивещества внутри полого астрономического тела

Уравнениями гравитационного поля ОТО описывается лишь равновесное движение в СО Вейля точек сплошной материи (идеальной жидкости) и ее собственного пространства, которое жестко связано с этой материей. Свободное (инерциальное) движение пробных частиц в полостях внутри жидкости или в пустом пространстве над ней определяется в СО Вейля не только напряженностью потенциальных сил, которые задаются метрическим тензором ПВК жидкости и пропорциональны гамильтонианам этих частиц, но и напряженностью псевдодиссипативных псевдосил, которые задаются космологическим λ-членом уравнений ОТО и пропорциональны импульсам этих частиц. Наличие этих диссипативных псевдосил в пустом пространстве обусловлено лишь эволюционным уменьшением значения абсолютной скорости света [16,17]. Поэтому, гамильтониан свободно движущейся пробной


29-04-2015, 03:10


Страницы: 1 2 3 4
Разделы сайта