Рис. 1.5.7. Усилитель ошибки.
Компаратор тока струму и триггер, который управляет модуляцией переключений
Рис. 1.5.8. Схема компаратора тока.
Компаратор тока постоянно следит за напряжением на резисторе Rs и сравнивает его с опорным напряжением (1В) на другом входе компаратора.
;
;
Выходной буфер ІМС UC3842.
Схема управления являет собой собою выходной буферный каскад, выходной ток этого каскада — ±1А. Этот каскад может управлять работой силового ключа на большой частоте.
Рис. 1.5.9. Выходной буфер UC3842
Расчет элементов импульсного стабилизатора.
Поскольку импульсный стабилизатор состоит из двух одинаковых полуплеч (стабилизатор положительного напряжения и стабилизатор отрицательного напряжения), целесообразно будет посчитать только один из них, и рассчитанные значения элементов перенести на другой. Для расчета выберем стабилизатор положительного напряжения.
Исходные данные для электрического расчета:
- Входное напряжение Uвх = 65...150 В;
- Выходное напряжение Uвых = 150 В;
- Изменение выходного напряжения DU = 5В;
- Выходная мощность Рвых = 300 Вт;
- Частота переключения силового ключа fs = 100 кГц.
Схема корректора мощности приведена на рис.4.8.
Рис. 1.5.10. Схема импульсного стабилизатора
Расчет емкости входного конденсатора
Определим минимальную емкость входного конденсатора С2:
Сin LF ³ Р0 /(2·p·f ·V0·η) (4.10)
где – f – частота переключения силового ключа (100 кГц)
– V0 – выходного напряжение (150 В)
– η=0.9 – прогнозированный КПД преобразователя
– Р0 – выходная мощность – 300 Вт
Сin LF = 300 / (2·3,14·25000·0.9·150) =82.7 мкФ
Выбираем к качестве входного конденсатора конденсатор емкостью 330мкФ и рабочим напряжением 400В.
Расчет емкости входного высокочастотного конденсатора
Входной высокочастотный конденсатор фильтра (C4) должен уменьшить шумы, которые возникают при высокочастотных переключениях силового ключа, что в свою очередь вызывает импульсы тока в индуктивности.
Cin HF = Irms /(2·p·f·r·Vin min) (4.7)
где – f – частота переключения (100 кГц);
– Іrms – входной высокочастотный ток;
– Vin min – минимальное входное напряжение (65 В);
– r – коэффициент высокочастотных пульсаций входного напряжения, который находится между 3 і 9 %. Принимаем r = 7%.
Іrms = Рout / Uin min; (4.8)
Іrms = 300 / 65 = 4,64 А;
Сin = 4,64/(2×3,14×100000×7×65) = 0.0065 мкФ.
Выбираем в качестве входного высокочастотного конденсатора конденсатор емкостью 0.01мкФ и рабочим напряжением 400В.
Выходной конденсатор
Определим значение емкости выходного конденсатора:
С0 ³ Р0 /(4·p·V0 ·DV0) (4.10)
где –DV0 – изменение выходного напряжения (5 В)
–f – частота переключения силового ключа ( 100 кГц)
–V0 – выходное напряжение (150 В)
–Р0 – выходная мощность – 300 Вт
С0 = 300 / 4·3,14·100000·5·150 =63.7 мкФ
Выбираем в качестве выходного — конденсатор емкостью 220мкФ и рабочим напряжением 400В.
Расчет катушки индуктивности
Значение индуктивности катушки рассчитывается исходя их необходимой мощности, которая протекает через последнюю, и значения тока пульсаций.
(4.11)
(4.12)
где - s - длительность цикла открытия/закрытия силового ключа;
- ІLpk - пиковый токи катушки индуктивности;
- f - частота переключения силового ключа;
- V0 – выходное напряжение.
Длительность цикла ми можем определить по формуле:
(4.13)
Значение пикового тока, которое протекает через индуктивность можем определить по формуле:
(4.14)
где - Vin min – минимальное значение входного напряжения (65В),
Следовательно, значение s равняется
s = (150 – 1,41·65)/150 = 0,389 сек
Значение пикового тока:
ІLpk = (2×1,41×300) / 65 = 13 А
Тогда значение индуктивности, которая необходима для работы преобразователя напряжения:
L = (2·300·0,389)/(132·100000) = 15 мкГн.
Расчет силового ключа.
Выбор управляющего ключа предопределяется максимальным током коллектора, рабочим напряжением и предельной частотой переключения.
Так как у нас максимальный ток, который будет протекать через транзистор составляет 13 А, рабочее напряжение до 200 В, а частота переключений составляет 100 кГц, в качестве силового ключа выбираем полевой транзистор К1531.
Его параметры следующие:
- Максимальное напряжение Uсе – 400 В;
- Постоянный ток коллектора при Т = 1000С Iс – 27 А;
- Падение напряжения в открытом состоянии Uсе – 1,65 В;
- Максимальна частота переключений – 160 кГц.
Рассчитаем, какая же мощность будет рассеваться на транзисторе.
Формула расчета потерь следующая:
Р = Iс2·Rсе (4.15)
Rсе – падение напряжения транзистора в открытом состоянии (0.14 Ом)
Iс – ток, который протекает через транзистор (13А – из расчета максимального пульсирующего тока в катушке индуктивности).
Следовательно, потери транзистора в открытом состоянии составляют
РIGBT = 13·0.14 = 23.6 Вт.
Расчет выходных диодов.
Максимальное значение среднего тока, исходя из значения мощности, которая должна передаваться в нагрузку – 300 Вт.
Можно рассчитать:
І = P/U
І = 300/150 = 2A
Диоды выбираем из следующих условий, которые гарантируют надежную работу
ІDm ≥ 1,2Імакс
UDm ≥ 1,2Uмакс
Следовательно, исходя из этих расчетов, выбираем в качестве выходных диодов, диод типа MUR860. Параметры диода следующие:
Максимальное обратное напряжение – 500 В;
Максимальный рабочий ток – 8 А;
Максимальная допустимая температура диода – 150 0С.
1.5.3. Электрический расчет входного и выходного фильтра.
Природа и источники электрического шума.
Борьба с генерацией и излучением высокочастотного шума – один из загадочных “черных ящиков” в проектировании импульсных источников питания и конечного изделия.
Шум создается везде, где имеют место быстрые переходы в сигналах напряжения или тока. Много сигналов, особенно в импульсных преобразователях напряжения, являются периодическими, то есть, сигнал, который содержит импульсы с ВЧ фронтами, повторяется с предполагаемой частотой следования импульсов (pulse repetition frequency, PRF). Для импульсов прямоугольной формы значения этого периода определяет основную частоту самой волны. Преобразование Фурье волны прямоугольной формы создает множество гармоник этой основной частоты двойного значения времени переднего или заднего фронта импульсов. Это типично в мегагерцовом диапазоне, и гармоники могут достичь очень высоких частот.
В импульсных преобразователях напряжения с ШИМ ширина импульсов постоянно меняется в ответ на выходную нагрузку и входное напряжение. В результате получаем почти распределение энергии белого шума с отдельными пиками и уменьшением амплитуды с повышением частоты.
Кондуктивный шум (то есть, шумовые токи, которые выходят из корпуса прибора через линии питания ) может появляться в двух формах: синфазных помех (common-mode) и помех при дифференциальном включении (differential-mode). Синфазные помехи – это шум, который выходит из корпуса только по линиям электропитания, а не заземления. Помехи, при дифференциальном включении – это шум между линией и одним из выводов питания. Шумовые токи фактически вытекают через вывод заземления.
Типовые источники шума.
Существует несколько основных источников шума внутри импульсного преобразователя напряжения с ШИМ, что и создает большую часть излучаемого и кондуктивного шума.
Источники шума являются частью шумовых контуров, которые представляют собой соединение на печатной плате между потребителями ВЧ тока и источниками тока. Главным источником шума является входная схема питания, которая содержит ключ, первичную обмотку трансформатора и конденсатор входного фильтра. Конденсатор входного фильтра обеспечивает трапецеидальные сигналы тока, необходимые для преобразования напряжения, поскольку входная линия всегда хорошо фильтруется с полосой пропускания, какая намного ниже рабочей частоты преобразователя напряжения. Конденсатор входного фильтра и ключ должен размещаться близко возле трансформатора, чтобы минимизировать длину соединений. Кроме этого, поскольку электролитические конденсаторы имеют плохие ВЧ характеристики, параллельно им должен быть включенный керамический или пленочный резистор.
Чем хуже характеристики конденсатора входного фильтра, тем больше блок из силовой линии будет забирать энергию ВЧ тока, что приведет к возникновению кондуктивных синфазных электромагнитных помех.
Вторым основным источником шума является контур, который состоит из выходных диодов, конденсатора выходного фильтра и вторичных обмоток трансформатора. Между этими компонентами протекают трапецеидальной формы токи большой амплитуды. Конденсатор выходного фильтра и выпрямитель необходимо размещать как можно ближе к трансформатору; для минимализации излучаемого тока. Этот источник также создает синфазные кондуктивные помехи, главным образом, на выходных каскадах источника питания.
Фильтры кондуктивных электромагнитных помех.
Существует два типа входных силовых шин. Силовые шины постоянного тока – это однопроводные силовые соединения, второе плечо питания которых формирует заземление. Другим типом входного соединения является двух или трехпроводная система питания от сети переменного тока. Проектирование фильтра электромагнитных (далее ЭМ) помех для систем постоянного тока осуществляется в основном в виде простого LC-фильтра. Все помехи между одним силовым проводом и соединением через “землю” называются синфазными. Фильтр постоянного тока, значительно более сложный, поскольку учитывает паразитарные характеристики компонентов.
Входной фильтр кондуктивных ЭМ помех предназначен для удержания ВЧ кондуктивного шума в середине корпуса. Фильтрация линий входа/выхода также важна для защиты от шума внутренних схем (например микропроцессоров, АЦП, ЦАП).
Проектирование фильтра синфазных помех.
Фильтр синфазных помех фильтрует шум, который создается между двумя линиями питания (H1 и H2). Схема такого фильтра приведена ниже на рис.1.5.11.
Рис. 1.5.11. Фильтр синфазных помех.
В фильтре синфазных помех обмотки катушки индуктивности находятся в фазе, но переменный ток, который протекает через эти обмотки – в противофазе. В итоге, для тех сигналов, которые совпадают или противоположны по фазе на двух линиях электропитания, синфазный поток внутри сердечника уравновешивается.
Проблема проектирования фильтра синфазных помех заключается в том, что при высоких частотах (когда собственно и нужная фильтрация) идеальные характеристики компонентов искажаются через паразитарные элементы. Основным паразитарным элементом является межвитковая емкость самого дросселя. Это небольшая емкость, которая существует между всеми обмотками, где разница напряжений (В/виток) между витками ведет себя подобно конденсатору. Этот конденсатор при высокой частоте действует как шунт вокруг обмотки и позволяет ВЧ переменному току протекать в обход обмоток. Частота, при которой это явление является проблемой, выше частоты авторезонанса обмотки.
Между индуктивностью самой обмотки и этой распределенной межвитковою емкостью формируется колебательный контур. Выше точки авто резонанса влияние емкости становится большим от влияния индуктивности, что снижает уровень затухания при высоких частотах.
Частотная характеристика фильтра изображена на рис. 1.5.12.
Рис. 1.5.12. Частотная характеристика фильтра.
Этот эффект можно уменьшить, использовав Cx большей емкости. Частота авторезонанса является той точкой, в которой проявляется возможность наибольшего затухания для фильтра. Таким образом, путем выбора метода намотки обмоток индуктивности, можно разместить эту точку поверх частоты, которая нужна для наилучшей фильтрации.
Чтобы начать процесс проектирования необходимо измерить спектр не фильтрованного кондуктивного шума или принять по отношению к нему некоторые предположения. Это необходимо для того, чтобы знать, каким должно быть затухание и на каких частотах.
Примем, что нам необходимо 24дБ затухания на частоте переключения преобразователя напряжения.
Определим частоту среза характеристики фильтра:
,
де Gζ – затухания;
,
где: fc – желаемая частота среза характеристики фильтра, fsw- рабочая частота преобразователя напряжения. В нашем случае fsw=100кГц, затухание Gζ= -24дБ.
Выбор коэффициента затухания
Минимальный коэффициент затухания (ζ) не должен быть менее 0,707. Меньшее значение приведет к “резонансу” и не даст меньшее 3дБ затухания на частоте среза характеристики.
Расчет начальных значений компонентов
,
где: ζ – коэффициент затухания, ζ=0,707, RL =50Ом - импеданс линии,
;
Принимаем С≈0,1мкФ 400В.
Принимаем Сх=0,22мкФ400В. Данные конденсаторы размещены между линиями электропитания и должны выдерживать напряжение 250 В и скачки напряжения.
Величину Су – конденсаторов, которые размещены между каждой фазой и “землей”, и должны выдерживать высокие напряжения ≈2500 В выбирают на несколько порядков меньше Су чем Сх. Это связано с тем, что наибольшая емкость конденсатора, доступная при номинальном напряжении 4 кВ, составляет 0,01 мкФ. Принимаем Су=2,2 нФ.
Поскольку суммарная емкость выбранных конденсаторов больше рассчитанной, то можно допустить, что фильтр будет обеспечивать минимум — 60 дБ затухания при частотах в диапазоне от 500 кГц до 10 Мгц.
Расчетная схема фильтра подходит как для входной, так и для выходной цепи:
Рис. 1.5.13. Входной фильтр электромагнитных помех.
L5=L=450 мкГн
С55=С58=Сх=0,22 мкФ400 В
С54=С56=Су=3,3 нФ3 кВ.
Рис.1.5.14. Выходной фильтр электромагнитных помех.
L6=L=450 мкГн
С54=С56=Су=3,3 нФ3 кВ.
С57=С59=Сх=0,22 мкФ400 В
1.6. Обоснование выбора элементов схемы
Источник бесперебойного питания должен обеспечивать круглосуточную работу любого устройства, которое подключено к нему, с сохранением выходных параметров, поэтому к нему выдвигаются жесткие требования, как к конструкции, так и к выбору элементов схемы.
Условно элементы схемы можно разделить на элементы общего применения и специальные.
Элементы общего применения являются изделиями массового производства, поэтому они достаточно широко стандартизированы. Стандартами и нормами установлены технико-экономические и качественные показатели, параметры и размеры элементов. Такие элементы называют типовыми. Выбор типовых элементов проводится по параметрам и характеристикам, которые описывают их свойства, как при нормальных условиях эксплуатации, так и при разных влияниях (климатических, механических и др.).
Основными электрическими параметрами является: номинальное значение величины, характерной для данного элемента (сопротивление резисторов, емкость конденсаторов, индуктивность катушек и т. д.) и границы допустимых отклонений; параметры, которые характеризуют электрическую прочность и способность долгосрочно выдерживать электрическую нагрузку; параметры, которые характеризуют потери, стабильность и надежность.
Основными требованиями, которыми нужно руководствоваться при проектировании радиоэлектронной аппаратуры, являются требования по наименьшей стоимости изделия, его высокой надежности и минимальным малогабаритным показателям. Кроме того, при проектировании важно увеличивать коэффициент повторяемости электрорадиоэлементов. Исходя из перечисленных выше критериев сделаем выбор элементной базы проектируемого устройства.
1.6.1. Выбор резисторов.
При выборе резисторов, прежде всего, обращаем внимание на их габариты, стоимость и надежность, которая обусловлена наработкой на отказ. Исходя из того, что современные интегральные технологии далеко продвинулись вперед, по сравнению с прошлыми годами, мы имеем резисторы, которые характеризуются: высокой надежностью и низкой себестоимостью, компактными размерами и большой разновидностью.
Сравним несколько типов резисторов.
Толстопленочные резисторы с допуском ±5%.
Технические параметры. Таблица 1.6.1
Параметры | Значения | ||||
Тип | RC01 | RC11 | RC21 | RC31 | RC41 |
Типоразмер корпуса | 1206 | 0805 | 0603 | 0402 | 0201 |
Диапазон номиналов сопротивления | 1 Ом …1 МОм | 10 Ом… 1 МОм |
|||
Допуск | ±5% | ||||
Максимальная мощность | 0.25 Вт | 0.125Вт | 0.1 Вт | 0.063 Вт | 0.005 Вт |
Максимальное рабочее напряжение | 200 В | 150 В | 50 В | 15В | |
Диапазон рабочих температур | -55 … +155 ºС |
Толстопленочные резисторы с допуском ±1%.
Технические параметры. Таблица 1.6.2
Параметры | Значения | ||||
Тип | RC02H | RC02G | RC12H | RC12G | RC22H |
Типоразмер корпуса | 1206 | 1206 | 0805 | 0805 | 0603 |
Диапазон номиналов сопротивлений | 1 Ом …1 Мом | 10 Ом… 1 МОм |
|||
Допуск | ±1% | ||||
Максимальная мощность | 0.25 Вт | 0.25Вт | 0.125Bт | 0.125 Вт | 0.1 Вт |
Максимальное рабочее напряжение | 200 В | 150 В | 50 В | ||
Диапазон рабочих температур | -55 … +155 ºС |
Типоразмеры SMD резисторов. Таблица 1.6.3
Типоразмер корпуса | L (мм) | W (мм) | T (мм) | Масса (г) |
0201 | 0.6 | 0.3 | 0.3 | 0.02 |
0402 | 1.0 | 0.5 | 0.35 | 0.06 |
0603 | 1.6 | 0.8 | 0.45 | 0.2 |
0805 | 2.0 | 1.25 | 0.55 | 0.55 |
1206 | 3.2 | 1.6 | 0.55 | 1.0 |
Исходя из таб.1.6.1. и таб.1.6.3. в качестве сопротивлений выбираем толстопленочные резисторы RC01 и RC02H с типоразмером корпуса 1206 (рис.1.6.1).
Мощные SMD резисторы. Технические характеристики. Таблица 1.6.4
Параметры | Значение | ||
Тип | XC0204 | RWN5020 | RWP5020 |
Типоразмер корпуса | SMD MELF | SMD POW | SMD POW |
Диапазон номиналов сопротивлений | 0.22Ом…10МОм | 0.003Ом…1МОм | 1Ом…0.1МОм |
Допуск | 0.1%...5% | 1;2;5% | 1;5% |
Максимальная мощность | 1 Вт | 1.6Вт | 1.6Bт |
Максимальное рабочее напряжение | 300 В | ||
Диапазон рабочих температур | -55 … +155ºС |
Исходя из таб.1.6.4. в качестве мощных сопротивлений выбираем резисторы RWN5020 с типоразмером корпуса SMD POW (рис.6.2.б).
А = 1.5 мм.
В = 1.2 мм.
С = 4.7 мм.
Рис.1.6.1. Рекомендованное расположение резисторов при пайке: RC01, RC02H типоразмера 1206.
а)
б)
Рис.1.6.2. Типоразмеры корпусов резисторов:
а) SMD MELF ; б) SMD POW
В качестве подстроечных сопротивлений выбираем резисторы PVZ3A фирмы Murata черт. 1.6.3.
Подстроечные сопротивления PVZ3A.
Технические параметры. Таблица 1.6.5
Функциональная характеристика | Линейная |
Номинальная мощность | 0.1Вт при 50°С |
Максимальное рабочее напряжение | 50V |
Рабочий диапазон температур | -25°C…85°C |
Допустимое отклонение номинального значения сопротивления | ±30% |
Угол поворота | 230°± 10° |
Диапазон номинальных сопротивлений | 100Ом…2МОм |
Температурный коэффициент сопротивления (ТКО) | 500ppm/°C |
Усилие поворота | 20-200 г./см |
Рис.1.6.3. Типоразмер подстроечных резисторов PVZ3A.
1.6.2 Выбор конденсаторов.
При выборе конденсаторов, учитывая условия эксплуатации изделия, а также электрические параметры, будем руководствоваться тем, что для конденсаторов выдвигаются следующие требования:
- наименьшая масса;
- наименьшие размеры;
- относительная дешевизна;
- высокая стабильность;
- высокая надежность;
Возьмем для рассмотрения несколько типов конденсаторов, и сделаем сравнение относительно класса диэлектрика в виде таблицы.
SMD конденсаторы. Технические параметры. Таблица 1.6.6
Класс диэлектрика | Класс 1 | Класс 2 |
Типоразмер корпусу | 0402…1210 | 0402…2220 |
Номинальное напряжение Uн | 50В; 200В;500В;1кВ;3кВ | 25В; 50 В; 100В; 200В; 500В;1кВ;2кВ;3кВ |
Диапазон емкостей | 1 пФ…10 нФ;1нФ…10мкФ | 1 пФ…1 нФ; 1нФ…10мкФ |
Допуск емкостей (в % или пФ) |
При Сн<10 пФ: ±0.1 пФ ±0.25 пФ ±0.5 пФ При Сн≥10 пФ: ±1 % ±2 % ±5 % ±10 % |
±5 % ±10 % ±20 % |
Максимально относительная девиация емкости ΔС/С | - | ±15 % |
Диапазон рабочих температур | -55…+125ºС | -55…+125ºС |
Максимальное значение тангенса угла потерь tg δ | <1.10-3 | <25.10-3 <35.10-3 (16В) |
Сопротивление изоляции при 25 ºС | > 105 МОм | > 105 МОм |
при 125 ºС | - | > 104 МОм |
Постоянная времени при 25 ºС |
> 1000 с | > 1000 с |
при 125 ºС | > 100 с | > 100 с |
Типоразмер SMD конденсаторов. Таблица 1.6.6
Размер мм |
0402 1005 |
06032 1608 |
0805 2012 |
1206 3216 |
1210 3225 |
l | 1.5±0.1 | 1.6±0.15 | 2.0±.02 | 3.2±0.2 | 3.2±0.3 |
b | 0.5±0.05 | 0.8±0.1 | 1.25±0.15 | 1.6±0.15 | 2.5±0.3 |
s | 0.5±0.05 | 0.8±0.1 | 1.35max | 1.3max | 1.7max |
k | 0.1-0.4 | 0.1-0.4 | 0.13-0.75 | 0.25-0.75 | 0.25-0.75 |
Исходя из таб.1.6.6., в качестве SMD конденсаторов выбираем конденсаторы с диэлектриком 1-го класса, типоразмером корпуса 1206 (рис.1.6.4.).
А = 1.5 мм.
В = 1.2 мм.
С = 4.7 мм.
Рекомендованное расположение
при пайке SMD конденсаторов типорозмера 1206.
Выбираем электролитические конденсаторы фирмы Hitano, для обычного монтажа серии ECR.
Серия ECR:
диапазон напряжений | 6.3…100В | 160…460В |
диапазон емкостей | 0.47…10000мкФ | 0.47…220мкФ |
температурный диапазон | -40…+85°С | -25…+85°С |
ток потерь | <0.01CU | <0.03CU |
разброс емкостей | ±20% при 20°С, 120Гц |
Диэлектрические потери (tgs), не больше
U,B | 16 | 25 | 35 | 50 | 63 | 100 | 200 | 350 | 400 |
tgs(D4-6.3) | 0.16 | 0.14 | 0.12 | 0.1 | 0.1 | 0.08 | 0.18 | 0.2 | 0.2 |
Стабильность при низких температурах (отношение импедансов на частоте 120Гц).
U,B | 16 | 25 | 35 | 50 | 63 | 100 | 200 | 350 | 400 |
Z(-25°C)/ Z(+20°C) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Z(-40°C)/ Z(+20°C) | 4 | 4 | 3 | 3 | 3 | 3 |
Типоразмеры электролитических конденсаторов. Таблица 1.6.8
мкФ/B | 16 | 25 | 35 | 50 | 63 | 100 | 200 | 350 | 400 |
1 | 5´11 | 5´11 | 5´11 | 5´11 | 6´11 | 6´11 | |||
2.2 | 5´11 | 5´11 | 5´11 | 6´11 | 6´11 | 8´12 | |||
4.7 | 5´11 | 5´11 | 5´11 | 8´12 | 8´12 | 10´13 | |||
10 | 5´11 | 5´11 | 5´11 | 5´11 | 5´11 | 6´11 | 10´16 | 10´13 | 10´13 |
22 | 5´11 | 5´11 | 5´11 | 5´11 | 6´11 | 6´11 | 10´21 | 10´13 | 10´16 |
33 | 5´11 | 5´11 | 5´11 | 6´11 | 6´11 | 8´12 | 13´21 | 10´21 | 10´21 |
47 | 5´11 | 5´11 | 5´11 | 6´11 | 6´11 | 10´13 | 13´21 | 13´21 | 13´26 |
100 | 5´11 | 6´11 | 6´11 | 8´12 | 10´13 | 10´21 | 16´26 | 16´32 | 16´32 |
220 | 6´11 | 8´12 | 8´14 | 10´13 | 10´16 | 13´26 | 18´36 | 18´41 | |
330 | 8´12 | 8´14 | 10´13 | 10´17 | 10´20 | 13´26 | |||
470 | 8´12 | 8´14 | 10´16 | 13´21 | 13´26 | 16´26 | |||
1000 | 10´16 | 10´21 | 13´21 | 13´26 | 16´25 | 18´41 | |||
2200 | 13´21 | 13´21 | 16´26 | 16´36 | 18´36 | ||||
3300 | 13´26 | 16´26 | 16´32 | 18´36 | 22´41 | ||||
4700 | 16´26 | 16´32 | 18´36 | 22´41 | 25´41 |
Рис.1.6.5. Габаритные размеры электролитических конденсаторов.
D | 5 | 6 | 8 | 10 | 13 | 16 | 18 | 22 | 25 |
P | 2.0 | 2.5 | 3.5 | 5.0 | 5/0 | 7.5 | 7.5 | 10 | 12.5 |
d | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 0.8 | 0.8 | 1.0 | 1.0 |
1.6.3 Выбор индуктивности и трансформаторов
Выбираем изделия фирмы Epcos.
В качестве дросселей, для фильтров по питанию, из таблицы выберем дроссели типа DB36-10-47, DST4-10-22, FMER-K26-09.
Катушки индуктивности. Технические
29-04-2015, 03:07