Калибровочно-эволюционная интерпретация специальной и общей теорий относительности

силовых полей, полностью компенсирующих потенциальные поля, обусловленные физической неоднородностью абсолютного пространства, а также при условном отсутствии эволюционного самосжатия микрообъектов вещества или же при полной компенсации обусловленных этим эволюционным процессом псевдодиссипативных сил какими-либо другими силами.

Это, например, рассматриваемые в СТО классические ИСО и евклидовы пространственно однородно калибровочно замедленно самосжимающиеся СО (ЗСОКСОЕ) [9], в которых имеют место одинаковый темп течения времени во всех точках их собственного пространства, отсутствие каких-либо потенциальных сил, действующих на неподвижные и подвижные объекты, и прямолинейное с постоянной скоростью распространение излучения. Это также космологические СО, частично калибровочно замедленно самосжимающиеся, (ЗСЧКСОК) и, в том числе, евклидовы (ЗСЧКСОЕ). В этих КСО, в отличие от первых, имеет место непрямолинейность распространения, а также непостоянство и анизотропия скорости света в собственном метрическом пространстве при наличии постоянства и изотропности скорости света в собственном физическом пространстве [1]. В отличие от ИСО, в ЗСОКСОЕ, в ЗСЧКСОК и в ЗСЧКСОЕ имеет место действие на инерциально движущиеся объекты псевдодиссипативных или же псевдоассоциативных сил инерции, соответственно тормозящих или же ускоряющих движения этих объектов в данных СО.

В НКСО при однородности их собственного времени имеет место физическая неоднородность их собственного физического пространства, проявляющаяся виде гравитационного калибрующего поля и заключающаяся в неодинаковости темпов протекания аналогичных физических процессов а, следовательно, и собственного времени в разных точках этого пространства. Ими обладают пространственно неоднородно самодеформированные или самодеформирующиеся тела. В соответствии с этим в НКСО, в отличие от ОКСО, имеют место не абсолютная, а лишь пропорциональная взаимная синхронизация всех собственных часов, находящихся в разных точках ее пространства. В жестких НКСО имеет место сохранение в явном виде только индивидуальной энергии (гамильтониана) свободно падающего (движущегося по инерции) объекта, а в нежестких НКСО – только нормированного баланса его индивидуальной энергии и псевдорассеиваемой либо псевдоприсоединяемой (вследствие непсевдоравноускоренности или неинерциальности перемещения или же неизохорности самосжатия нежесткой СО) энергии, а также – сохранение степени инертности массы, но лишь у неподвижных объектов и объектов, движущихся по гравиэквипотенциальным (изотемповым) поверхностям данных СО. В НКСО также имеет место сохранение баланса импульсов взаимодействующих (соударяющихся) макрообъектов, однако лишь в бесконечно малой окрестности мировой точки взаимодействия. Это связано с физической неоднородностью собственного пространства НКСО, приводящей к несохранению импульсов переносящих взаимодействие виртуальных квазичастиц и частиц, а поэтому, – и к возрастанию импульса свободно падающего объекта. Эквивалентная контравариантной инертной массе полная энергия свободно падающего объекта (включающая и коллективизированную его энергию, «содержащуюся» в гравитационном поле) в процессе свободного падения не сохраняется, а увеличивается. Это связано с возрастанием (вместе с возрастанием инертности массы) доли приходящейся объекту коллективной энергии обладающего гравитационным полем тела по мере приближения этого объекта к центру масс вещества всех объектов тела.

Наряду с квантовым временем НКСО позволяют ввести в них, как и в ОКСО, также и независимое от пространственных координат время, отсчитываемое не по квантовым (атомным) часам, являющимся собственными часами в каждой отдельной точке пространства НКСО, а по астрономическим (общесистемным) часам. Показания астрономических часов могут совпадать с показаниями некоторых квантовых часов, находящихся в отдельных точках пространства НКСО, или же, вообще, не совпадать с показаниями ни одних квантовых часов, как это имеет место, например, в СО Шварцшильда (СОШ), а быть лишь пропорциональными им. Значение скорости света, определяемое непосредственно в точке j отсчета времени по ее собственным квантовым часам (собственное значение скорости света), одинаково во всех точках пространства НКСО. И оно может быть принято при измерении расстояний в световых единицах длины равным единице. По часам же, отсчитывающим независимое от координат астрономическое (общесистемное) время СО, значение скорости света (псевдособственное ее значение) неодинаково в разных точках НКСО. Но зато, скорость движения объектов, значения их инертной массы и энергии, а также действующих на них сил, определяемые по астрономическим часам, как и темп течения астрономического времени, не будут зависеть от точки наблюдения в НКСО. Квантовые часы для отсчета в НКСО независимого времени могут быть использованы лишь при условии переменной их калибровки, зависящей от устанавливаемого калибрующим гравитационным полем распределения в пространстве НКСО несобственного значения скорости света.

В общем случае собственные метрические пространства самосжимающихся и саморасширяющихся НКСО неевклидовы и могут быть евклидовыми лишь в гипотетических НКСО, например, в таких – как РВССОЕ [11] и УРПНКСОЕ [9]. Соответствующими идеальным физическим телам НКСО являются ИСОАК, вырождаемые в ИСОК, и РВССОШ, вырождаемые в РВССОК, а также различные УПСО, и в том числе, вырождаемые в УПСОМ, и различные ЗСНЧКСОШ, вырождаемые в ЗСНЧКСОК.

ЧКСО, обладающие очень слабой неоднородность собственного времени (практически ненаблюдаемой на больших расстояниях от центра масс тела и при малых скоростях движения его точек), будем называть квазикалибровочно самодеформирующимися СО (ККСО). В этих СО незначительная неоднородность собственного времени всегда сопровождается и нестационарной физической неоднородностью их собственного пространства [1,12]. СО слабо остывающих или же радиационно нагреваемых реальных физических тел, как правило, и являются ККСО. Имеющие место в этих СО, как неоднородность собственного времени, так и физическая неоднородность собственного пространства пренебрежительно малы. Такими ККСО являются, например, ЗСНПКСОШ, соответствующие естественно остывающим в собственной СО телам [1].

18. Ввиду ненаблюдаемости в СО точечного тела изменения темпа течения собственного квантового (стандартного) времени после перемещения тела в физически неоднородном пространстве НКСО, в СО этого тела будет наблюдаться изменение темпов течения времени и протекания физических процессов в других точках НКСО. В связи с этим потребуется перерасчет длительности, как ранее прогнозированных промежутков времени до будущих событий, так и промежутков прошедшего времени с учетом новой взаимной калибровки темпов течения времени по часам данного тела и объектов, находящихся в других точках НКСО. Этого можно избежать лишь при использовании не квантовых, а астрономических часов, отсчитывающих независимое от пространственных координат НКСО общесистемное время и фактически выполняющих функцию автоматически перекалибровываемых с учетом физической неоднородности пространства собственных квантовых часов тела, и, тем самым, обеспечивающих позиционную перенормировку в СО тела (в соответствии с позиционно изменившейся длительностью эталонного кванта собственного времени) энергии и других зависящих от темпа течения времени физических параметров и характеристик объектов. В случае неоднородности собственного времени, имеющей место в ЧКСО, потребуется также и непрерывная событийная перенормировка времени а, следовательно, и физических параметров и характеристик наблюдаемых объектов и, причем не только при перемещении точечного тела в пространстве ЧКСО, но и при его неподвижности в ней. Тем самым, в НЧКСО из-за наличия физической неоднородности, как пространства, так и времени требуется непрерывная позиционно-событийная перенормировка физических параметров и характеристик наблюдаемых объектов. При перемещении тела в области пространства ККСО со слабой его физической неоднородностью, а также при слабой неоднородности собственного времени ККСО изменение темпа течения времени по квантовым часам тела в точках пространства ККСО будет практически ненаблюдаемым. И, следовательно, не потребуется проведение, как перерасчета длительности промежутков времени, так и перенормировки значений физических параметров и характеристик наблюдаемых объектов.

19. ОКСО и НКСО имеют следующие общие свойства и закономерности:

– мгновенность в СО гипотетического абсолютно жесткого тела распространения напряженности силового поля в собственном его пространстве (фронт наведения или снятия напряженности силового поля в СОФВ совпадает с фронтом собственного времени СО тела) а, следовательно, и переход абсолютно жесткого тела от неинерциального или неравновесного соответственно к инерциальному или равновесному движению без релаксаций [3];

– отсутствие, в отличие от ОЧКСО и НЧКСО, каких-либо наблюдаемых изменений в собственном пространстве, обусловленное равномерностью и сохранением евклидовости или исходной кривизны этого пространства (угловые и линейные, как метрические, так и фотометрические размеры покоящихся в СО объектов наблюдаются в ней неизменными и такими же по величине как и в состоянии покоя наблюдателя и этих объектов относительно ФВ);

– обусловленная однородностью собственного времени СО независимость от начального момента времени протекания любых закономерных физических процессов при одних и тех же начальных их условиях (в том числе – траектории распространения света между любыми точками СО [4,9,11], длительности промежутка времени, за который свет проходит по любому замкнутому или разомкнутому пути, и смещения спектра излучения от неподвижных в НКСО источников света [2,4,11]);

– изотропность частоты излучения неподвижных в СО источников;

– изотропность скорости света в вакууме (имеет место в жестко связанном с телом его физическом пространстве, несмотря на НПНФВ);

– локальное значение скорости света в вакууме (измеренное собственными часами, неподвижными в точке распространения света в момент измерения) одинаково во всех точках собственного пространства СО; при использовании в качестве эталонов длины и времени соответственно длины волны и частоты света оно является неизменным и во времени и, причем не только в ОКСО и в НКСО, но и в ОЧКСО и в НЧКСО; при этом значения скорости света в других точках НКСО, наблюдаемое из какой-либо ее точки, отличаются от значения скорости света в точке наблюдателя, а соотношения наблюдаемых значений скоростей света определяют пропорциональность темпов течения времени в этих точках;

– одинаковость законов природы во всех СО, принадлежащих к одной и той же группе СО, за исключением СОФВ, которая входит в группы всех типов СО и в которой количественные изменения отдельных физических явлений переходят в качественные изменения, заключающиеся в исчезновении (вырождении) этих явлений;

– подобность законов природы во всех реально существующих СО, за исключением законов, отражающих наличие особых (специфических) физических явлений, присущих только конкретным типам СО и обусловленных наличием в этих СО соответствующих пространственных калибрующих полей (в ЧКСО – также наличием временного калибрующего поля, задающего псевдодиссипативные или же псевдоассоциативные силы инерции).

20. Ввиду отсутствия обуславливаемых нежесткостью СО псевдодиссипативных или псевдоассоциативных сил инерции, а также вследствие однородности собственного времени, индивидуальная энергия (гамильтониан) инерциально движущихся и, в том числе, свободно падающих в поле тяготения объектов, а также фотонов в ОКСО и НКСО не изменяется в процессе их движения. Однако в НКСО из-за неравенства темпов протекания собственного квантового (стандартного) времени в разных точках ее физически неоднородного пространства величина этой энергии в них будет наблюдаться неодинаковой.

В отличие от гамильтониана, величина импульса фотона в НКСО не будет зависеть от точки наблюдения, однако и не будет сохраняться в процессе распространения излучения ввиду физической неоднородности собственного пространства НКСО. Исходя из универсальности понятия импульса, одинаково применимого как для фотонов, так и для обладающего массой объекта, импульс последнего также не должен зависеть от точки наблюдения в НКСО. Временная контравариантная компонента тензора энергии-импульса, являющаяся полной энергией точечного объекта A, эквивалентна его контравариантной релятивистской массе. Временная ковариантная компонента тензора энергии-импульса, являющаяся гамильтонианом объекта A, эквивалентна его ковариантной релятивистской массе. Значение радиальной контравариантной компоненты тензора энергии-импульса, являющейся радиальным фотометрическим импульсом точечного объекта A, так же как и значение его метрического импульса, не зависит от точки наблюдения в НКСО.

В НКСО следует различать наблюдаемые из ее произвольной точки i подобную классической контравариантную и ковариантную нерелятивистские инертные массы (массы покоя), являющиеся мерами соответственно временной и относительной пространственной инертностей точечного объекта A, находящегося в точке j НКСО. Значения контравариантной и ковариантной нерелятивистских масс объекта A равны друг другу лишь при наблюдении их непосредственно из точки j местонахождения объекта, когда они тождественны собственному значению его массы, являющейся мерой количественного и качественного состава, а также термодинамического состояния вещества. И, следовательно, значения контравариантной и ковариантной масс точечного объекта A, как и значения его скорости движения, а также гамильтониана и полной энергии, зависят от точки наблюдения объекта в НКСО, оставаясь при этом неизменным для наблюдателя, перемещающегося в пространстве вместе с этим объектом.

А это значит, что при наблюдении из одной и той же точки пространства НКСО значения контравариантной и ковариантной масс покоя точечного объекта в процессе его перемещения будут изменяться. Они станут такими же, как значения соответственно контравариантной и ковариантной масс идентичных ему объектов, неподвижно находящихся в тех точках НКСО, в которых в определенные моменты времени находится и сам движущийся объект. И, следовательно, эти значения зависят от места нахождения объекта в НКСО и не зависят от скорости движения объекта.

В отличие от гамильтониана, так называемая, стандартная энергия [10] (попутно наблюдаемая и фиксируемая по неподвижным в точке нахождения объекта и, следовательно, каждый раз новым часам НКСО) является калибровочно-инвариантной величиной. Однако, как и полная энергия, она не сохраняется при однородности времени в процессе инерциального движения объекта и конформно преобразуется не по тем же зависимостям, что и энергия безмассовых квазичастиц. Эта энергия не имеет особого физического смысла. Ее введение сопряжено с нарушением принципа фиксации событий по одним и тем же часам.

21. В СО со стационарной физической неоднородностью равномерного собственного пространства имеют место устанавливаемые калибрующим (гравитационным) полем стационарные распределения в этом пространстве физических характеристик. А именно, наблюдаемые из произвольной точки i этого пространства пространственные распределения несобственного (координатного) значения скорости света в вакууме и зависимых от нее темпа течения времени, ковариантной и контравариантной масс, индивидуальной и полной энергий покоя идентичных объектов, а также энергии фотонов, излучаемых идентичными источниками.

Движение и гравитация влияют на протекание физических процессов а, следовательно, и на движение физических тел аналогичным образом – через изменение частоты взаимодействия элементарных частиц их вещества. Поэтому то инертная и гравитационная массы тождественно эквивалентны друг другу а, следовательно, и не имеет никакого особого или самостоятельного значения любая из конкретных причин физической неоднородности пространства тела. То ли это неинерциальное движение тела или же непрерывный процесс эволюционного самосжатия его в абсолютном пространстве, то ли наличие в пространстве обусловленного НПНФВ гравитационного поля, то ли совместное действие всех этих факторов. Значения этих физических характеристик в (используемом обычно в уравнениях гравитационного поля ОТО) независимом от координат часов астрономическом (общесистемном координатном [10]) времени НКСО являются независимыми от координат точек их наблюдения. В соответствии с этим определяемые в координатном (астрономическом) времени НКСО контравариантная и ковариантная инертные массы идентичных объектов, находящихся в разных точках пространства НКСО, как и другие их физические характеристики, не зависят от точки наблюдения, однако, зависят от координат точек нахождения этих объектов.

Ввиду участия в создании физической неоднородности ФВ в любой конкретной точке пространства всех физических тел Вселенной, эта зависимость в некоторой степени согласуется с принципом Маха [10]. Однако присутствие в пространстве стороннего вещества лишь усиливает инертность массы пробного физического тела, так как при помещении его в гипотетическое абсолютно пустое пространство значение его инертной массы не будет нулевым.

22. В СОФВ, как и в любой другой гипотетической СО с наблюдаемой неравномерностью самодеформации в собственном ее пространстве микрообъектов вещества, ковариантная и контравариантная массы, импульс, гамильтониан и полная энергия точечного объекта, в отличие от реальных СО вещества, в которых эта неравномерность деформации принципиально не наблюдается, зависят не только от скорости распространения взаимодействия в точке нахождения объекта, но и от степени «самосжатия» микрообъектов вещества.

Так как величина степени самосжатия вещества зависит от взаимной калибровки эталонов длины в НКСО и в СОФВ, то от этой калибровки будут зависеть и определяемые конформными преобразованиями соотношения наблюдаемых в НКСО и в СОФВ значений контравариантной и ковариантной инертных масс, гамильтониана и импульса объекта A.

23. Ввиду отсутствия в вакуумном пространстве тела вещества, тормозящего движение объектов, а, следовательно, – и градиентов давления и температуры, на инерциально движущийся точечный объект в вакуумном ФНАП, будут действовать только четыре силы [1]. А именно, – псевдодиссипативная сила эволюционного торможения движения объекта с импульсовой напряженностью, пропорциональной постоянной Хаббла; потенциальная гравитационная сила, вызванная физической неоднородностью ФВ, а тем самым, и заполненного им абсолютного пространства, с гамильтонианной напряженностью, являющейся градиентом распределения в ФНАП логарифма энергии покоя идентичных объектов; псевдокориолисова (псевдогироскопическая) гравитационная сила первого рода, вызванная, как и потенциальная сила, физической неоднородностью абсолютного пространства; псевдокориолисова (псевдогироскопическая) гравитационная сила второго рода, вызванная анизометричностью (масштабной неоднородностью) вещества в абсолютном пространстве.

Псевдодиссипативная сила эволюционного торможения движения и потенциальная гравитационная сила имеют одну и туже физическую природу, заключающуюся в изменении условий взаимодействия элементарных частиц вещества соответственно во времени и в пространстве. Первая из них отвечает за наличие явления расширения Вселенной (разбегания от наблюдателя астрономических тел), а вторая – за наличие явления тяготения в СО вещества, пространственно неоднородно (анизометрически) эволюционно самосжимающегося в абсолютном пространстве и при этом наводящего пространственную неоднородность и свойств ФВ. И, следовательно, явление расширения Вселенной, отсутствующее, как и предполагал Вейль [10,16,17], в несопутствующей веществу фундаментальной СОФВ, можно обусловить физической неоднородностью космологического (абсолютного) времени, являющегося метрически однородным для РВССОК и РВССОШ. Явление же тяготения, вызванное стремлением всей совокупности вещества (как неподвижного, так и свободно падающего) к достижению состояния с минимумом энтальпии, может быть обусловлено физической неоднородностью, как абсолютного пространства, так и собственного пространства вещества. Ввиду этого поле тяготения более естественно характеризовать не инертномассовой, как это


29-04-2015, 03:10


Страницы: 1 2 3 4 5 6 7
Разделы сайта