Калибровочно-эволюционная интерпретация специальной и общей теорий относительности

вещества образующего ЗСНЧКСОШ. При этом данными фиктивными калибровочными квазичастицами элементарные частицы вещества этих объектов могут «взаимодействовать» лишь с виртуальными частицами ФВ, а не с находящимися в нем стабильными элементарными частицами вещества. Иначе движение этих объектов было бы уже не инерциальным.

Все это, а также эквивалентность потенциальным и псевдодиссипативным силам инерции соответственно гравитационных сил и сил эволюционного торможения движения объектов в СОФВ заставляет рассматривать лишь как фиктивные калибровочные квазичастицы также и «ненаблюдаемые квазичастицы» – гравитоны. Тем самым, это заставляет допустить в СОФВ, как и в нежестких ЧКСО, лишь условное сохранение энергии инерциально движущихся объектов. А именно, допустить сохранение лишь баланса их остаточной энергии и энергии, эволюционно ими потерянной, однако, потенциально восполнимой при движении этих объектов по спирально-эллиптическим орбитам. Ведь ввиду нестабильности в абсолютном пространстве, как и в физическом пространстве ЧКСО, неперенормированных пространственных параметров а, следовательно, и инертности массы микрообъектов вещества индивидуальная энергия инерциально движущегося тела не сохраняется. И, следовательно, сохранение в явном виде индивидуальной энергии (гамильтониана) любого инерциально движущегося тела может иметь место лишь в жесткой СО КБПВК. И это вполне логично, так как только в СО КБПВК из всех взаимно конформно преобразуемых СО мировыми линиями инерциально движущихся тел являются стационарные геодезические линии ПВК.

Это не противоречит закону сохранения энергии, так как указывает лишь на необходимость, но недостаточность метрической однородности времени избранной СО для сохранения в ней энергии в явном виде. Для этого необходима еще и стабильность в метрическом пространстве этой СО размеров микро- и макрообъектов вещества, физические процессы в котором используются для отсчета времени. И, следовательно, эта СО должна сопутствовать данному веществу и быть для него жесткой. Только при выполнении указанных условий и будут отсутствовать в этой СО ответственные за несохранение индивидуальной энергии (гамильтониана) псевдодиссипативные и псевдоассоциативные силы, вызванные не взаимодействием элементарных частиц вещества, а изменением инертности их массы (что и имеет место, как в ЧКСО, так и в СОФВ).

36. При равновесном сжатии тела закономерно движутся лишь центры масс макрообъектов вещества тела. Микрообъекты при этом движутся не равновесно, а хаотически и могут то отдавать часть своей энергии, как друг другу, так и виртуальным частицам ФВ, то забирать ее назад вместе с исчезновением отдельных виртуальных частиц а, следовательно, и с уменьшением их количества. В соответствии с этим эволюционное уменьшение в абсолютном пространстве «размеров» (точнее изменение значений пространственных параметров) элементарных частиц происходит не плавно, а на фоне непрерывного повторения случайных пульсаций (растяжений-сжатий) этих частиц. Это связано с нестационарностью свойств ФВ и проявляется в наличии, кроме метрической и физической макронеоднородностей, еще и нестационарных (пульсирующих) метрических и физических микронеоднородностей ФВ а, следовательно, и заполняемого им абсолютного пространства. Тем самым эволюционно самосжимающееся тело обладает, как нестационарными микрокривизнами (шероховатостями), так и нестационарными физическими микронеоднородностями собственного пространства. Пульсации «размеров» элементарных частиц сопровождаются и колебаниями несобственного значения скорости распространения взаимодействия между ними. Эти колебания несобственного значения скорости распространения взаимодействия частично компенсируют влияние на частоту взаимодействия колебаний величины расстояния, проходимого квазичастицами (волной взаимодействия) в процессе взаимодействия. И проявляются они лишь локально, практически не сказываясь на стабильности скорости распространения свободных квазичастиц в окружающем элементарные частицы пространстве. Как нестационарная микрокривизна, так и нестационарная физическая микронеоднородность пространства сказываются на волне излучения лишь среднестатистически. Их воздействие на излучение проявляется в определенной оптической плотности вещества и в дифракционном рассеянии в нем фотонов.

Вместе с пульсациями «размеров» элементарных частиц и с локально происходящими колебаниями несобственного значения скорости распространения взаимодействия происходит также и случайные колебания относительно своих математических ожиданий значений их инертной массы. С учетом этого и колебаний, как несобственных значений скорости распространения взаимодействия, так и значений скорости движения (точнее распространения) самих элементарных частиц происходит также и колебание значений их гамильтониана и импульса, изменяющихся дискретно в процессе имеющего квантовый характер взаимодействия элементарных частиц с «облаком» окружающих их виртуальных частиц ФВ. Возможно, что в процессе этого взаимодействия, сопровождающегося самосжатием элементарной частицы, ее индивидуальная энергия становится весьма значительно меньше ее доли энергии, коллективизированной в гравитационном поле и фактически содержащейся в окружающем ее «облаке» виртуальных частиц. Возможно, к тому же индивидуальная энергия элементарной частицы станет и соизмеримой с порциями энергии, отданными ею каждой из виртуальных частиц этого «облака», размеры которого и количество виртуальных частиц в котором тем больше, чем меньше «размеры» и энергия являющейся «ядром» этого «облака» пульсирующей элементарной частицы. В этом случае вероятность восстановления максимально возможной или же близкой к ней индивидуальной энергии в «самосжавшейся» элементарной частице, хотя и будет велика, но не будет уже стопроцентной. В результате интерференции случайных флуктуаций физической неоднородности ФВ а, тем самым, и интерференции связанных с ними флуктуаций распределения энергии в «облаке» виртуальных частиц в этом «облаке» может образоваться несколько конкурирующих между собой локальных энергетических центров. Вследствие этого с той или иной вероятностью максимальное значение индивидуальной энергии принципиально может восстановиться в любой виртуальной частице «облака», а прежняя самосжавшаяся частица – исчезнуть, как и подавляющее большинство других виртуальных частиц. На вероятность восстановления максимального значения индивидуальной энергии частицы в каждой из виртуальных частиц «облака» будут влиять внешние силовые поля и, в том числе, силовые поля измерительного прибора. Это будет проявляться в несимметричности относительно самосжавшейся элементарной частицы пространственного распределения неоднородности свойств ФВ. Возможно, в этом и кроется одна из причин волновых свойств элементарных частиц.

37. Несмотря на усреднение, суммарный импульс измерительной системы, состоящей из множества пульсирующих элементарных частиц и условно считающейся неподвижной в БПВК, будет в БПВК не нулевым, а лишь колеблющимся относительно своего нулевого математического ожидания. И, следовательно, абсолютно неподвижного в БПВК или в СО подвижной лаборатории измерительного прибора принципиально не может быть. Поэтому измерения энергии или импульса элементарных частиц фактически производятся не в СО БПВК или подвижной измерительной лаборатории, а в СО «колеблющихся» относительно нее и друг друга квазинеподвижных измерительных приборов. Вследствие этого, а также ввиду невозможности абсолютно точной взаимной синхронизации процессов измерения различными измерительными приборами, показания последних будут случайным образом отличаться друг от друга. И, поэтому, ни о каком абсолютно точном измерении энергии и импульса не может быть и речи. И, следовательно, чем больше промежуток времени, за который определяется усредненное значение энергии элементарной частицы, тем на меньшую величину результаты измерения будут отличаться от «истинного» ее значения, а само «истинное» значение – от его математического ожидания в СО БПВК или подвижной измерительной лаборатории. Аналогично, чем больше отрезок пути элементарной частицы, в пределах которого определяется усредненное значение импульса ее, тем на меньшую величину показания приборов будут отличаться от «истинного» значения импульса, а «истинное» значение – от его математического ожидания в СО БПВК или подвижной измерительной лаборатории. Конечно, при этом не следует исключать влияния на результат измерения и воздействия самого измерительного прибора. К тому же даже в жесткой СО вещества пространственные распределения значений микрокривизны и физической микронеоднородности ее пространства (в отличие от распределений макрокривизны и физической макронеоднородности) не являются стабильными во времени. И это приводит к несохранению мгновенных значений гамильтонианов и импульсов, как фотонов, так и элементарных частиц. Тем самым, в микромире могут сохраняться лишь средние значения (математические ожидания) гамильтонианов и импульсов элементарных частиц. И, следовательно, соотношения неопределенностей Гейзенберга фактически устанавливают форму записи законов сохранения в микромире (в субатомной физике).

38. В пределах горизонта видимости собственного метрического пространства эволюционно самосжимающегося в СОФВ тела заключено все бесконечное абсолютное (мировое) пространство ФВ, так что из-за горизонта видимости не могут появиться, как и скрыться за ним, никакие астрономические объекты [1,2,21]. С любым событием (где бы и когда бы оно ни произошло) на горизонте видимости одновременным всегда является бесконечно далекое космологическое прошлое. Поэтому устанавливаемый уравнениями гравитационного поля горизонт видимости собственного пространства любого астрономического тела фактически является псевдогоризонтом прошлого. Ввиду, как неподвижности горизонта видимости в собственном метрическом пространстве любого астрономического тела, так и неизменности его фотометрического радиуса убегание от наблюдателя далеких галактик нельзя рассматривать буквально как расширение Вселенной в этом пространстве. Эти галактики свободно «падают» на неподвижный горизонт видимости, однако, не в состоянии никогда его достичь, ввиду принадлежности его лишь бесконечно далекому космологическому прошлому. Более высокая концентрация астрономических объектов возле горизонта видимости, обусловленная этим, и конечность собственного пространства физического тела, однако, не обнаруживаются в процессе астрономических наблюдений. Это связано с определением расстояний до далеких звезд непосредственно по их концентрации в определенном телесном угле, исходя из предположения о равномерном распределении их в пространстве, а также – по их светимости, оцениваемой количеством квантов энергии в потоке излучения, исходя из предположения об изотропности их светимости. Однако же, все это справедливо лишь для евклидова абсолютного пространства, а не для собственного пространства вещества, имеющего значительную кривизну вблизи своего горизонта видимости. И, следовательно, в процессе любых наблюдений определяется не метрическое радиальное расстояние до далекого объекта A в конечном неевклидовом собственном пространстве тела, из точки i которого ведутся наблюдения. На самом деле, определяется непрерывно перенормируемое радиальное расстояние до объекта A в бесконечном евклидовом абсолютном пространстве Ньютона–Вейля. Это расстояние до объекта A имеет место в момент космологического времени, в который объект A испустил излучение. Определяется же оно с помощью метрической шкалы, откалиброванной по вещественному эталону длины у наблюдателя, однако, не в момент испускания, а в момент регистрации излучения в точке i. Поэтому то расстояния, определяемые по светимости в максимуме блеска сверхновых с умеренно и чрезвычайно высокими значениями смещения длины волны излучения в красную область спектра, значительно и превышают хаббловы фотометрические расстояния до этих сверхновых в собственном пространстве наблюдателя [27, 28]. И, следовательно, «несоответствие» зависимости Хаббла расстояний до сверхновых с умеренно и чрезвычайно высоким длинноволновым смещением спектра излучения никоим образом не вызвано постепенным увеличением значения постоянной Хаббла, предусматриваемым гипотезой «ускоряющегося расширения Вселенной» [29]. Оно лишь подтверждает обоснованность отсчета космологического времени в СО Вейля. К тому же из-за несоблюдения одновременности в собственном времени вещества событий, имеющих одинаковый космологический возраст, при нестабильности значения постоянной Хаббла в космологическом времени ее величина была бы неодинаковой в разных точках пространства в один и тот же момент собственного времени любого астрономического объекта расширяющейся Вселенной. Это же, как и следовало ожидать, в астрономических наблюдениях не обнаруживается. Однако, несмотря на строго экспоненциальное ускорение расширения Вселенной, вызванная самосжатием вещества в СО Вейля «антигравитация» в собственной СО любого астрономического тела конечно присутствует. При этом космологическая постоянная уравнений гравитационного поля однозначно определяется постоянной Хаббла, значение которой неизменно не только в пространстве, но и во времени, а «антигравитационное» поле сопутствующей веществу СО, согласно (25), является полностью устранимым гравитационным полем. Ведь в несопутствующей веществу СО Вейля «антигравитация» отсутствует.

39. Наблюдаемое в точке i уменьшение частоты излучения источника A, условно неподвижного в абсолютном пространстве и движущегося в точке j РВССОШ с хаббловой скоростью, определяется при пренебрежении слабой напряженностью собственного гравитационного поля на излучающей поверхности источника релятивистской доплеровской зависимостью [2]. Совершенно такая же зависимость смещения спектра излучения далекого астрономического объекта от длительности космологического времени распространения этого излучения к наблюдателю имеет место и в большинстве теорий стационарной Вселенной. Статистический анализ результатов наблюдения сверхновых звезд [28, 30], выполненный в работе [31], подтверждает хорошее соответствие этой зависимости результатам наблюдений сверхновых.

При не слишком большом расстоянии до источника излучения оно мало отличается от псевдодоплеровского уменьшения частоты, не учитывающего связанной с явлением расширения Вселенной физической неоднородности собственного пространства наблюдателя (эта неоднородность заключается в неодинаковости наблюдаемых из точки i несобственных (координатных) значений скоростей света в других точках этого пространства). На больших же расстояниях влияние на него физической неоднородности собственного пространства наблюдателя очень существенно. Поэтому используемое в космологии псевдодоплеровское значение скорости удаления объектов расширяющейся Вселенной, нормированное по несобственному значению скорости света является немного завышенным по сравнению с его истинным значением. Однако оно является существенно меньшим его псевдохабблова значения. В соответствии с этим при использовании псевдодоплеровского смещения частоты излучения (не учитывающего физической неоднородности собственного пространства эволюционно самосжимающегося астрономического объекта, в СО которого ведется наблюдение) также определяется расстояние, более близкое к непрерывно перенормируемому расстоянию в абсолютном пространстве, а не к фотометрическому расстоянию в собственном пространстве наблюдателя.

40. Закономерный процесс эволюционного самосжатия микрообъектов вещества во всех точках пространства Вселенной, имеющих одинаковый гравитационный потенциал в абсолютном а, следовательно, и в несвязанном с каким-либо конкретным самосжимающимся телом глобальном космическом пространстве, происходит в СОФВ синхронно. Поэтому то метрически однородное абсолютное время ФВ (темп течения которого практически совпадает с темпом течения собственного времени любой из РВССОШ эволюционно самосжимающегося вещества в точках собственного его пространства с пренебрежительно слабой напряженностью гравитационного поля и с пренебрежительно слабым проявлением расширения Вселенной) и может рассматриваться как космологическое время Вселенной. По МОШАВ, определяющей темп течения собственного астрономического времени РВССОШ и являющейся, поэтому, и шкалой космологического времени Вселенной (ШКВВ), процесс эволюционного самосжатия вещества не имеет ни начала, ни конца. Поэтому существование Вселенной вечно, как в прошлом, так и в будущем. В соответствии с этим и ввиду равенства нулю определяемой в астрономическом времени РВССОШ скорости света на горизонте видимости, излучение от горизонта никогда не может достичь наблюдателя. Это, конечно, связано с отсутствием горизонта видимости в бескрайнем абсолютном пространстве а, следовательно, и с фиктивностью сферы горизонта видимости. Существование Вселенной вечно также и в псевдособственном времени нежестких СО квазиравновесно и неравновесно самосжимающихся в абсолютном пространстве тел. Это же имеет место и в независимом от гравитации астрономическом (координатном) собственном времени нежестких СО.

В собственном же путиподобном квантовом времени вещества астрономического тела, эволюционно остывающего и, поэтому, обладающего нежесткой СО, мнимая длительность существования Вселенной может иметь и «конечное» значение. Однако данный «конечный» промежуток времени является фиктивным, так как отсчитывается от события, находящегося за пределами области существования данной СО во времени. Ведь остывающие астрономические тела образовались не на первичной стадии эволюции материи, да и само вещество, изначально плотно заполняющее все абсолютное (мировое) пространство, начало неадиабатически остывать за счет безвозвратной потери, так называемого, свободно-свободного излучения лишь после своего просветления. К тому же бесконечно далекому космологическому прошлому в нежесткой СО соответствует не нулевое «начальное» неперенормированное значение радиуса горизонта видимости ее физического пространства. Поэтому то определяемая в собственном путиподобном квантовом времени мнимая длительность существования вещества тела, обладающего, например, ЗСНПКСОШ и является конечной. В соответствии с этим конечным является и промежуток астрономического собственного времени ЗСНПКСОШ, соответствующий прохождению излучения к наблюдателю (находящемуся в точке j) от горизонта видимости, находящегося, на самом деле, за пределами области существования ПВК ЗСНПКСОШ.

Таким образом, эволюционное остывание вещества, обусловленное (согласно второму началу термодинамики) стремлением всей материи к максимуму энтропии, приводит не только к неравновесному его движению в СОФВ. Оно также приводит и к замедлению темпа течения собственного квантового времени вещества (по сравнению с темпом течения собственного времени в РВССОШ тел, вещество которых находится в состоянии термического равновесия). Тем самым, эволюционное остывание вещества приводит и к конечности в его путиподобном собственном времени не только промежутка этого времени от начала остывания вещества, но и его промежутка, отсчитываемого от мнимого начала координатного времени нежесткой СО. Это вполне отвечает конечности протекания определенной фазы (стадии) эволюции материи Вселенной и, ни коим образом, не ограничивает ее существование во времени вообще. Длительность же времени самораздувания Вселенной в РВССОШ (соответствующей до начала остывания первичного вещества каждой из его элементарных частиц) принципиально не может быть конечной.

Каждое астрономическое тело, кроме устанавливаемого уравнениями гравитационного поля фиктивного неподвижного горизонта видимости его ПВК, имеет еще и реальный космологический горизонт видимости, фотометрический радиус сферической поверхности которого меньше радиуса фиктивного горизонта видимости. Эта, так называемая, поверхность последнего рассеяния реликтового излучения является сплошным источником этого излучения. Она непрерывно удаляется от астрономического тела ввиду постепенного увеличения космологического возраста реликтового излучения а, следовательно, и светового расстояния проходимого этим излучением. За пределами этого «реликтового» горизонта вещество в ПВК тела находится в еще не просветленном плазменном состоянии.

Список литературы

Даныльченко П.И. Нежесткие системы отсчета координат и времени, сжимающиеся в пространстве Минковского. В сб.: Калибровочно-эволюционная теория Мироздания (пространства, времени, тяготения и расширения Вселенной) (КЭТМ). – Винница, 1994, вып.1 с.52.

Даныльченко П.И. Псевдоинерциально (равновесно) сжимающиеся системы отсчета координат и времени. В сб.: КЭТМ. – Винница, 1994, вып.1 с.22.

Даныльченко П.И. Феноменологическое обоснование лоренцева сокращения длины движущегося тела. В сб.: КЭТМ. – Винница, 1994, вып.1 с.5; Природа релятивистского сокращения длины. В сб.: Калибровочно-эволюционная интерпретация специальной и общей теорий относительности (КЭИТО). – Вінниця, О. Власюк, 2004, с.3.

Даныльченко П.И.


29-04-2015, 03:10


Страницы: 1 2 3 4 5 6 7
Разделы сайта