Физиология движений

УО "МГПУ им. И.П. Шамякина"

Физиология движений

Студентки 5к.,5гр.

ф-та ДиНО

Матвеевой М.А.

Мозырь 2009

Физиология движений и физиология активности

В трудах Н.А. Бернштейна нашла блестящую разработку проблема механизмов организации движений и действий человека. Занимаясь этой проблемой, Н.А. Бернштейн обнаружил себя как очень психологично мыслящий физиолог (что бывает крайне редко), в результате его теория и выявленные им механизмы оказались органически сочетающимися с теорией деятельности; они позволят углубить наши представления об операционально-технических аспектах деятельности.

Н.А. Бернштейн выступил в научной литературе как страстный защитник принципа активности - одного из тех принципов, на которых, как вы уже знаете, покоится психологическая теория деятельности. Мы разберем его идеи, высказанные в порядке защиты и развития этого принципа. Наконец, теория Н.А. Бернштейна окажется нам чрезвычайно полезной при обсуждении так называемой психофизической проблемы, где речь пойдет, в частности, о возможностях и ограничениях физиологического объяснения в психологии.

Николай Александрович Бернштейн (1896-1966) по образованию был врач-невропатолог, и в этом качестве он работал в госпиталях во время гражданской и Великой Отечественной войн. Но наиболее плодотворной оказалась его работа, как экспериментатора и теоретика в целом ряде научных областей - физиологии, психофизиологии, биологии, кибернетике.

Это был человек очень разносторонних талантов: он увлекался математикой, музыкой, лингвистикой, инженерным делом. Однако все свои знания и способности он сконцентрировал на решении главной проблемы своей жизни - изучении движений животных и человека. Так, математические знания позволили ему стать основоположником современной биомеханики, в частности биомеханики спорта. Практика врача-невропатолога снабдила его огромным фактическим материалом, касающимся расстройств движений при различных заболеваниях и травмах центральной нервной системы. Занятия музыкой дали возможность подвергнуть тончайшему анализу движения пианиста и скрипача: он экспериментировал в том числе и на себе, наблюдая за прогрессом собственной фортепианной техники. Инженерные знания и навыки помогли Н.А. Бернштейну усовершенствовать методы регистрации движений - он создал ряд новых техник регистрации сложных движений. Наконец, лингвистические интересы, несомненно, сказались на стиле, которым написаны его научные труды: тексты Н.А. Бернштейна - одни из самых поэтичных образцов научной литературы. Его язык отличается сжатостью, четкостью и в то же время необыкновенной живостью и образностью. Конечно, все эти качества языка отражали и качества его мышления.

В 1947 г. вышла одна из основных книг Н.А. Бернштейна "О построении движения", которая была удостоена Государственной премии. На титуле книги стояло посвящение: "Светлой, неугасающей памяти товарищей, отдавших свою жизнь в борьбе за Советскую Родину". В этой книге были отражены итоги почти тридцатилетней работы автора и его сотрудников в области экспериментальных, клинических и теоретических исследований движений и высказан ряд совершенно новых идей.

Одна из них состояла в опровержении принципа рефлекторной дуги как механизма организации движений и замене его принципом рефлекторного кольца, о чем я буду говорить более подробно. Этот пункт концепции Н.А. Бернштейна содержал, таким образом, критику господствовавшей в то время в физиологии высшей нервной деятельности точки зрения на механизм условного рефлекса как на универсальный принцип анализа высшей нервной деятельности.

Вскоре для Н.А. Бернштейна настали трудные годы На организованных дискуссиях подчас некорректно и некомпетентно выступали коллеги и даже некоторые бывшие ученики Н.А. Бернштейна с критикой высказывавшихся им новых идей. В этот тяжелый для себя период Николай Александрович не отказался ни от одной из своих идей, заплатив за это, как потом выяснилось, потерей навсегда возможности вести экспериментально-исследовательскую работу.

Последний период жизни Н.А. Бернштейн был занят особой деятельностью. К нему домой шли ученые и научные работники разных профессий: врачи, физиологи, математики, кибернетики, музыканты, лингвисты - для научных бесед. Они искали у него советов, оценок, консультаций, новых точек зрения. (0б этом вы можете подробно прочесть в статье В.Л. Найдина "Чудо, которое всегда с тобой" [79]) Другую половину дня Н.А. Бернштейн был занят собственной научной, теоретической работой - он подводил итоги и снова осмысливал результаты, полученные в предыдущие периоды своей жизни.

Уже после его смерти многие узнали, что за два года до кончины Н.А. Бернштейн сам поставил себе диагноз - рак печени, после чего снялся с учета из всех поликлиник и строго расписал оставшийся срок жизни, который он тоже определил с точностью до месяца. Он успел закончить и даже просмотреть гранки своей последней книги "Очерки по физиологии движений и физиологии активности" [15].

Известный русский психиатр П.Б. Ганнушкин, характеризуя один из типов человеческих личностей, писал: "Здесь можно найти людей, занимающих позиции на тех вершинах царства идей, в разреженном воздухе которого трудно дышать обыкновенному человеку. Сюда относятся: уточненные художники-эстеты... глубокомысленные метафизики, наконец, талантливые ученые-схематики и гениальные революционеры в науке, благодаря своей способности к неожиданным сопоставлениям; с бестрепетной отвагой преображающие, иногда до неузнаваемости, лицо той дисциплины, в которой они работают" [25, с.386]. Читая эти строки, сразу вспоминаешь Н.А. Бернштейна: именно талантливый ученый-революционер, именно преобразивший до неузнаваемости дисциплину и именно "с бестрепетной отвагой"!

А теперь рассмотрим содержательно некоторые основные положения концепции Н.А. Бернштейна.

Залог успеха работ Бернштейна состоял в том, что он отказался от традиционных методов исследования движений. До него движения, как правило, загонялись в прокрустово ложе лабораторных процедур и установок; при их исследовании часто производилась перерезка нервов, разрушение центров, внешнее обездвижение животного (за исключением той части тела, которая интересовала экспериментатора), лягушек обезглавливали, собак привязывали к станку и т.п.

Объектом изучения Н.А. Бернштейн сделал естественные движения нормального, неповрежденного организма, и, в основном, движения человека. Таким образом, сразу определился контингент движений, которыми он занимался; это были движения трудовые, спортивные, бытовые и др. Конечно, потребовалась разработка специальных методов регистрации движений, что с успехом осуществил Бернштейн.

До работ Н.А. Бернштейна в физиологии бытовало мнение (которое излагалось и в учебниках), что двигательный акт организуется следующим образом: на этапе обучения движению в двигательных центрах формируется и фиксируется его программа; затем в результате действия какого-то стимула она возбуждается, в мышцы идут моторные командные импульсы, и движение реализуется. Таким образом, в самом общем виде механизм движения описывался схемой рефлекторной дуги: стимул - процесс его центральной переработки (возбуждение программ) - двигательная реакция.

Первый вывод, к которому пришел Н.А. Бернштейн, состоял в том, что так не может осуществляться сколько-нибудь сложное движение. Вообще говоря, очень простое движение, например коленный рефлекс или отдергивание руки от огня, может произойти в результате прямого проведения моторных команд от центра к периферии. Но сложные двигательные акты, которые призваны решить какую-то задачу, достичь какого-то результата, так строиться не могут. Главная причина состоит в том, что результат любого сложного движения зависит не только от собственно управляющих сигналов, но и от целого ряда дополнительных факторов. Какие это факторы, я скажу несколько позже, а сейчас отмечу только их общее свойство: все они вносят отклонения в запланированный ход движения, сами же не поддаются предварительному учету. В результате окончательная цель движения может быть достигнута, только если в него будут постоянно вноситься поправки, или коррекции. А для этого ЦНС должна знать, какова реальная судьба текущего движения. Иными словами, в ЦНС должны непрерывно поступать афферентные сигналы, содержащие информацию о реальном ходе движения, а затем перерабатываться в сигналы коррекции.

Таким образом, Н.А. Бернштейном был предложен совершенно новый принцип управления движениями; он назвал его принципом сенсорных коррекций, имея в виду коррекции, вносимые в моторные импульсы на основе сенсорной информации о ходе движения.

А теперь познакомимся с дополнительными факторами, которые, помимо моторных команд, влияют на ход движения.

Во-первых, это реактивные силы. Если вы сильно взмахнете рукой, то в других частях тела разовьются реактивные силы, которые изменят их положение и тонус.

Это хорошо видно в тех случаях, когда у вас под ногами нетвердая опора. Неопытный человек, стоя на льду, рискует упасть, если слишком сильно ударит клюшкой по шайбе, хотя, конечно, это падение никак не запланировано в его моторных центрах. Если ребенок залезает на диван и начинает с него бросать мяч, то мать тут же спускает его вниз; она знает, что бросив мяч, он может сам полететь с дивана; виной опять будут реактивные силы.

Во-вторых, это инерционные силы. Если вы резко поднимете руку, то она взлетает не только за счет тех моторных импульсов, которые посланы в мышцы, но с какого-то момента движется по инерции. Влияние инерционных сил особенно велико в тех случаях, когда человек работает тяжелым орудием - топором, молотом и т.п. Но они имеют место и в любом другом движении. Например, при беге значительная часть движения выносимой вперед ноги происходит за счет этих сил.

В-третьих, это внешние силы. Если движение направлено на объект, то оно обязательно встречается с его сопротивлением, причем это сопротивление далеко не всегда предсказуемо. Представьте себе, что вы натираете пол, производя скользящие движения ногой. Сопротивление пола в каждый момент может отличаться от предыдущего, и заранее знать его вы никак не можете. То же самое при работе резцом, рубанком, отверткой. Во всех этих и многих других случаях нельзя заложить в моторные программы учет меняющихся внешних сил.

Наконец, последний непланируемый фактор - исходное состояние мышцы.

Состояние мышцы меняется по ходу движения вместе с изменением ее длины, а также в результате утомления и т.п. Поэтому один и тот же управляющий импульс, придя к мышце, может дать совершенно разный моторный эффект.

Итак, действие всех перечисленных факторов обусловливает необходимость непрерывного учета информации о состоянии двигательного аппарата и о непосредственном ходе движения. Эта информация получила название "сигналов обратной связи". Кстати, роль сигналов обратной связи в управлении движениями, как и в задачах управления вообще, Н.А. Бернштейн описал задолго до появления аналогичных идей в кибернетике. Тезис о том, что без учета информации о движении последнее не может осуществляться, имеет веские фактические подтверждения.

Рассмотрим два примера. Первый я беру из монографии Н.А. Бернштейна [14].

Есть такое заболевание - сухотка спинного мозга, при котором поражаются проводящие пути проприоцептивной, т.е. мышечной и суставной, а также кожной чувствительности. При этом больной имеет совершенно сохранную моторную систему: моторные центры целы, моторные проводящие пути в спинном мозге сохранны, его мышцы находятся в нормальном состоянии. Нет только афферентных сигналов от опорно-двигательного аппарата. И в результате движения оказываются полностью * Примерно в то же время, т.е. в середине 30-х годов, наличие сигналов обратной связи в контуре управления физиологическими актами было описано другим советским физиологом, П.К. Анохиным, под названием "санкционирующая афферентация" [7] расстроены. Так, если больной закрывает глаза, то он не может ходить; также с закрытыми глазами он не может удержать стакан - тот у него выскальзывает из рук. Все это происходит потому, что субъект не знает, в каком положении находятся, например, его ноги, руки или другие части тела, движутся они или нет, каков тонус и состояние мышц и т.п. Но если такой пациент открывает глаза и если ему еще на полу чертят полоски, по которым он должен пройти (т.е. организуют зрительную информацию о его собственных движениях), то он идет более или менее успешно. То же происходит с различными ручными движениями.

Другой пример я беру из относительно новых экспериментальных исследований организации речевых движений.

Когда человек говорит, то он получает сигналы обратной связи о работе своего артикуляционного аппарата в двух формах: в форме тех же проприоцептивных сигналов (мы имеем чувствительные "датчики" в мышцах гортани языка, всей ротовой полости) и в форме слуховых сигналов.

Вообще сигналы обратной связи от движений часто запараллелены, т.е. они поступают одновременно по нескольким каналам. Например, когда человек идет, то ощущает свои шаги с помощью мышечного чувства и одновременно может их видеть и слышать. Так же и в обсуждаемом случае: воспринимая проприоцептивные сигналы от своих речевых движений, человек одновременно отчетливо слышит звуки своей речи. Я сейчас докажу, что и те и другие сигналы используются для организации речевых движений.

Современная лабораторная техника позволяет поставить человека в совершенно необычные условия. Испытуемому предлагают произносить какой-нибудь текст, например знакомое стихотворение. Этот текст через микрофон подают ему в наушники, но с некоторым запаздыванием; таким образом, испытуемый слышит то, что он говорил несколько секунд назад, а то, что говорит в данный момент, он не слышит. Оказывается, что в этих условиях речь субъекта полностью расстраивается; он оказывается неспособным вообще что-либо говорить!

В чем здесь дело? Нельзя сказать, что в описанных опытах испытуемый лишен сигналов обратной связи: оба чувствительных канала - мышечный и слуховой - функционируют. Дело все в том, что по ним поступает несогласованная, противоречивая информация. Так что на основании одной информации следовало бы производить одно речевое движение, а на основании другой - другое движение. В результате испытуемый не может произвести никакого движения.

Замечу, что описанный прием "сшибки" сигналов обратной связи используют для выявления лиц, симулирующих глухоту: если человек действительно не слышит, то задержка сигналов обратной связи по слуховому каналу не вызывает у него никакого расстройства речи; если же он только притворяется не слышащим, то этот прием действует безотказно.

Перейдем к следующему важному пункту теории Н.А. Бернштейна - к схеме рефлекторного кольца. Эта схема непосредственно вытекает из принципа сенсорных коррекций и служит его дальнейшим развитием.

Рассмотрим сначала упрощенный вариант этой схемы.

Имеется моторный центр (М), из которого поступают эффекторные команды в мышцу. Различные принципы управления движениями: а - принцип сенсорных коррекций (по Н.А. Бернштейну), б - то же, временная развертка, в - принцип рефлекторной дуги. Обозначения и сокращения: М - моторный центр, S - сенсорный центр, т (р. т) - мышца, рабочая точка, аф. сигн. - сигналы обратной связи от движения, эф. сигн. - эффекторные команды, рец. - рецептор внешнего стимула внизу, имея в виду также рабочую точку движущегося органа (т). От рабочей точки идут сигналы обратной связи в сенсорный центр (S); это чувствительные, или афферентные, сигналы. В ЦНС происходит переработка поступившей информации, т.е. перешифровка ее на моторные сигналы коррекции. Эти сигналы снова поступают в мышцу. Получается кольцевой процесс управления.

Данная схема станет более понятной, если ввести временную развертку процесса. Предположим, что только что сказанное относится к моменту t1; новые эффекторные сигналы приводят к перемещению рабочей точки по заданной траектории (момент t2), и т.д.

Как классическая схема рефлекторной дуги соотносится с таким "кольцом"? Можно сказать, что она представляет собой частный, притом "вырожденный", случай кольца: по схеме дуги совершаются жестко запрограммированные, элементарные кратковременные акты, которые не нуждаются в коррекциях. Я уже упоминала о них: это движения типа коленного рефлекса, мигания и т.п. Обратная афферентация в них теряет свое значение, и определяющую роль приобретает внешний пусковой сигнал (Рис.6, в). Для большинства же движений необходимо функционирование кольца.

Теперь обратимся к более позднему варианту схемы "кольца" Н.А. Бернштейна; она более детализована и поэтому позволяет гораздо полнее представить процесс управления двигательными актами.

Имеются моторные "выходы" (эффектор), сенсорные "входы" (рецептор), рабочая точка или объект (если речь идет о предметном действии) и блок перешифровок. Новыми являются несколько центральных блоков - программа, задающий прибор и прибор сличения.

Кольцо функционирует следующим образом. В программе записаны последовательные этапы сложного движения. В каждый данный момент отрабатывается какой-то ее частный этап, или элемент, и соответствующая частная программа спускается в задающий прибор.

Из задающего прибора сигналы поступают на прибор сличения; Н.А. Бернштейн обозначает их двумя латинскими буквами SW (от нем. Soll Wert, что означает "то, что должно быть"). На тот же блок от рецептора приходят сигналы обратной связи, сообщающие о состоянии рабочей точки; они обозначены IW (от нем. Ist Wert, что означает "то, что есть"). В приборе сличения эти сигналы сравниваются, и на выходе из него получаются дэльта W т.е. сигналы рассогласования между требуемым и фактическим положением вещей. Они попадают на блок перешифровки, откуда выходят сигналы коррекции; через промежуточные центральные инстанции (регулятор) они попадают на эффектор. Разберем функционирование кольца управления на примере какого-нибудь реального движения.

Предположим, гимнаст работает на кольцах. Вся комбинация целиком содержится в его двигательной программе. В соответствии с программой ему нужно в какой-то момент сделать стойку на руках (кстати, труднейший элемент!).

Из программы спускается в задающий прибор соответствующий приказ, и в нем формируются сигналы SW, которые идут на прибор сличения. Эти сигналы будут сличаться с афферентными сигналами (IW). Значит, сами они должны иметь сенсорно-перцептивную природу, т.е. представлять собой образ движения. Такой образ обеспечивается прежде всего сигналами проприоцептивной и зрительной модальностей; это "картина" стойки и с точки зрения ее общего вида, и с точки зрения ее двигательно-технического состава - положения частей тела, центра тяжести, распределения тонуса различных мышц и т.п.

Итак, в прибор сличения поступают и образ движения, и информация от всех рецепторов о реализованном движении.

Предположим, что, выходя на стойку, спортсмен сделал слишком


9-09-2015, 17:02


Страницы: 1 2 3 4
Разделы сайта