Архитектура на основе модели студента для интеллектуальных обучающихся сред

Питер Брусиловский

Международный Центр Научно-технической Информации

Мы обсуждаем архитектурные проблемы подхода к созданию интеллектуальных обучающих сред (ИОС), основанного на модели студента. В этом подходе различные компоненты ИОС, включая компоненты обучения, тренировки, среды и руководства используют центральную модель студента для адаптации ее поведения к данному студенту. Осуществление этого подхода основано на идеях интеллектуальных систем обучения, адаптивных интерфейсов и интеллектуальных систем справки. Мы вводим простую архитектуру, основанную на модели студента для ИОС, которую мы применили в нескольких разработанных системах, сообщаем о некоторых проблемах и ограничениях нашей первоначальной простой архитектуры и представляем улучшенную открытую архитектуру, основанную на модели студента для ИОС.

Введение

Интеллектуальная обучающая среда – относительно новый вид интеллектуальной образовательной системы, которая объединяет особенности традиционных Интеллектуальных Систем Обучения (ИСО) и обучающих сред. Традиционные ИСО способны поддерживать и контролировать обучение студента на нескольких уровнях, но не представляют возможности для обучения и приобретения знаний, управляемых студентом. Интеллектуальная обучающаяся среда (ИОС) включает специальный компонент, чтобы поддерживать обучение, управляемое студентом – модуль среды. "Термин среда используется, чтобы указать на часть системы, которая определяет или поддерживает действия, выполняемые студентом, и способы, доступные студенту для выполнения этих действий" (BurtonR.R., 1988). Некоторые недавние ИСО и ИОС включают также специальный компонент (мы называем его "руководство"), который обеспечивает доступ к структурированному инструктирующему материалу. Студент может работать с руководством через запросы справочной информации или через специальные инструментальные средства просмотра, исследуя инструктирующий материал самостоятельно. Интегрированная ИОС, которая включает компоненты среды и руководства в дополнение к обычному обучающему компоненту, может поддерживать изучение как процедурных, так и декларативных знаний и обеспечить как управляемые системой, так и управляемые студентом стили обучения.

Наши исследования в Московском Государственном университете и международном Центре Научно-технической Информации (ICSTI), сосредоточены на двух проблемах создания интегрированной ИОС: проблеме адаптации и проблеме интегрирования. Что касается адаптации, проблема состоит в том, чтобы сделать все компоненты интегрированной ИОС адаптивными. Большинство ИСО и обучающих компонентов ИОС могут приспособить свою работу (обучение) к данному студенту, однако очень немногие компоненты среды и руководства могут сделать это. Это была одна из наших целей – создать адаптивные компоненты среды и руководства ИОС. Что касается интеграции, наша позиция такова: интегрированная система должна быть не просто суммой, а реальным интегрированием ее компонентов. В частности это требует непрерывность работы студента в интегрированной ИОС. Результаты работы студента с любым из компонентов в течение сеанса должны быть приняты во внимание другими компонентами, чтобы приспособить их работу к измененному уровню знаний и текущему интересу конкретного студента.

Как решение вышеупомянутых двух проблем мы предлагаем подход к построению интегрированной ИОС, основанный на модели студента. Этим подходом все компоненты ИОС, включая среду и руководство, используют одну и ту же центральную модель студента, традиционную часть ИСО, чтобы приспособить ее поведение к данному студенту. Мы также разработали простую архитектуру ИОС, основанную на модели студента. С 1985 мы применяли этот подход и архитектуру, основанную на модели студента, в нескольких ИОС, разработанных нашей группой для различных областей. Мы используем эти ИОС, чтобы исследовать различные аспекты и проблемы интегрированной ИОС. Мы считаем наш подход плодотворным и эффективным, однако годы опыта дают нам возможность найти ограничения нашей первоначальной архитектуры. Недавно мы улучшили архитектуру, основанную на модели студента для ИОС, которую мы используем в нашей последней ИОС.

В этой статье мы представляем наш первоначальный подход и простую архитектуру, основанную на модели студента для ИОС, сообщаем о некоторых проблемах и ограничениях нашей первоначальной архитектуры, и предоставляем улучшенную открытую архитектуру, основанную на модели студента для ИОС

Предыдущий опыт

Первая цель такого подхода состоит в том, чтобы создать действительно адаптивную ИОС, где все компоненты могут динамически приспособиться к уровню студента. Следующие характеристики могут быть приняты во внимание компонентами ИОС, чтобы приспособить ее поведение к данному студенту: личные факторы, способы распознавания, стратегии, личные знания (Van der Veer G.C., 1990). Ключевой (и наиболее изменчивой) характеристикой студента с образовательной точки зрения являются знания студента по данной теме. В нашей работе мы, в основном, рассматриваем компонент общей модели студента, которая представляет знания студента.

Здесь хорошие основы обеспечены исследованиями интеллектуальных систем обучения (WengerE., 1987). Особенностью многих ИСО является то, что они выводят модель текущего уровня понимания предмета студентом и используют эту индивидуализированную модель, чтобы приспособить обучение к потребностям студента. Область ИСО – хороший источник идей, как проектировать модели студента и как использовать ее (модель) обучающими и тренирующими компонентами ИОС (Self J., 1987; VanLehn K., 1988). В то же время она предоставляет мало идей, как использовать её компонентами среды и руководства.

Идеи о создании адаптивного руководства могут быть найдены в области интеллектуальных систем справки (ИСС), которая имеет глубокие корни в исследовании ИСО (BreukerJ., 1990). Цель ИСС – поддерживать пользователя, работающего с прикладной системой. ИСС обеспечивает пользователя пассивной помощью (отвечает на вопросы студента) и активной помощью (обнаруживает неправильное и неоптимальное поведение и с приращением расширяет знания студента). ИСС использует оверлейные модели пользователей для адаптации ответов и объяснений к уровню знания каждого индивидуального пользователя.

Идеи, как использовать модель студента компонентом среды ИОС могут быть найдены в области адаптивных интерфейсов пользователя1 (Dieterich et al., 1993). Эта относительно новая область (по сравнению с ИСО) изучает интерфейсы, которые адаптируются к характеристикам пользователя. Ключевая часть адаптивного интерфейса – модель пользователя, которая представляет те особенности пользователя, которые являются важными для адаптации. Модель знания пользователя об области – важная часть общей модели пользователя. Благодаря схожести этих данных и содержащихся в ИСО, BenyonD.R. и MurrayD.M. (1993) рассматривают эту часть модели пользователя как модель студента.

Идеи из области адаптивных интерфейсов могут быть использованы для создания компонент адаптивной среды ИОС. Для этого надо рассматривать среду как обычную прикладную систему и студента – как пользователя этой системы (BrusilovskyP.L., 1993). Можно спорить, что компонент среды, основанный на идеях адаптивных интерфейсов, может приспособиться к знаниям студента об изучаемой среде, а не изучаемой области. Однако, обратите внимание, что любая существенная особенность образовательной среды представляет немного знаний об области.

Обобщенные области ИСО, ИСС и адаптивных интерфейсов формируют хорошую основу, чтобы достичь первой цели нашего подхода, то есть сформировать адаптивную ИОС, где все компоненты могут динамически приспособиться к изменяющимся знаниям студента. Вторая цель подхода состоит в том, чтобы иметь единое представление знаний студента в модели студента ИОС, которое может использоваться всеми компонентами ИОС. Эта особенность обеспечивает непрерывность: результаты работы студента с любым из компонентов, которые могут влиять на уровень знаний студента, немедленно отражаются в модели студента и могут быть учтены другими компонентами, которые приспосабливают свою работу к изменившимся знаниям студента. Для достижения этой цели мы должны спроектировать единую модель студента-пользователя и, обобщая, спроектировать архитектуру ИОС, основанную на модели студента, которая обеспечивает моделирование студента и совместное использование модели студента. Следующий раздел представляет простую архитектуру, основанную на модели студента, которую мы использовали прежде в наших нескольких ИОС. Последующий раздел представляет улучшенную архитектуру, основанную на модели студента, которую мы используем теперь.

Простая архитектура на основе модели студента

В нашей работе по разработке ИОС на основе модели студента мы шли от ИСО, т.е., принимая традиционную архитектуру ИСО в качестве базы для архитектуры ИОС, основанной на модели студента. Традиционная архитектура ИСО включает три основных компонента: компонент экспертизы, обучающий компонент и компонент моделирования студента. Каждый из компонентов содержит один из трех видов знаний, важного для интеллектуального обучения: знания об области, знания об обучении и знания о студенте и его моделировании (WengerE., 1987). Согласно этой архитектуре, модель студента представляет понимание студентом материала, который будет преподан. Модель студента используется обучающим компонентом, чтобы обеспечить адаптивное обучение на различных уровнях. Результаты работы студента с обучающими операциями возвращаются компоненту моделирования (диагностики) студента и используются, чтобы обновить модель студента. Это называют циклом моделирования студента.

Чтобы использовать опыт ИСО по моделированию студента, мы решили применить обычную модель студента, используемую обучающим компонентом ИОС в качесиве центральной модели студента-пользователя всей ИОС. В наших первых системах обучающий компонент совершает обычный цикл моделирования студента, в то время как другие компоненты ИОС только используют эту центральную модель студента для адаптации. Единственная проблема состояла в том, чтобы выбрать тип модели студента, которая может использоваться всеми компонентами.

Как мы можем видеть из предыдущей главы, ИСО, ИСС и адаптивные интерфейсы используют модели студента или пользователя для одной и той же цели – адаптации, что также приводит к подобию примененных моделей. Если мы рассматриваем компонент знаний студента моделей студента или пользователя, мы найдем подобные оверлейные модели, базирующиеся на модели структуры области, где область является или темой, которая будет преподана, или прикладной системой. Для каждого элемента знаний области модель студента (пользователя) хранит некоторые данные о компетентности студента (пользователя) и предыдущем опыте работы с этим элементом.

В нашей архитектуре, основанной на модели студента, модель области является сетью, узлы которой соответствуют элементам знаний предмета (зависящей от предмета) и чьи связи отражают виды отношений между узлами. Мы используем оверлейную модель, которая содержит одно целое число (счетчик) для каждого элемента знаний темы, измеряющее понимание студента этого элемента. Этот вид оверлейной модели является мощным и достаточно общим, чтобы использоваться различными компонентами ИОС. Модель студента обновляется специальным оценивающим модулем, который анализирует результаты студенческой деятельности при решении задач. Если ИОС содержит тренирующий компонент, который может следовать за пошаговым решением задач студентом, то может быть применена определенная технология, прослеживающая модель (CorbettA.T., AndersonJ.R., 1992), в противном случае используется разновидность дифференциального моделирования (WengerE., 1987) для обновления счетчиков понятий, связанных с проблемой. Изменения распространяются по связям сети.

Вышеупомянутая оверлейная модель доступна для всех модулей ИОС и может использоваться каждым из них для адаптации их поведения к знаниям студента. Однако, чтобы избежать использования бессмысленных чисел и обеспечить большую гибкость, мы предложили методику порогов. Каждый из компонентов ИОС может различить несколько отличных состояний знаний для каждого элемента знаний. Каждое из этих состояний имеет специальное значение для модуля с точки зрения адаптации. Чем больше состояний модуль может учитывать, тем более сложную адаптацию он может обеспечить. Простые модули могут отличать только два состояния, например, неизвестно и известно, в то время как самый адаптивный модуль обучения может отличать шесть состояний (BrusilovskyP.L., 1992a). Чтобы отобразить определенное целочисленное значение оверлейной модели в набор состояний, каждый модуль использует целочисленные пороги, которые делят возможный диапазон значений счетчика на требуемое количество интервалов, соответствующих состояниям знаний, распознаваемым модулем. Таким образом, простые модули используют только один порог, в то время как обучающий модуль использует пять порогов. Каждый модуль использует собственный набор порогов в центральной модели студента. Эти пороги могут быть различными для различных элементов знаний и различных студентов. Пороговая методика обеспечивает хорошую гибкость, давая способ адаптировать механизм моделирования студента к элементам знаний различной сложности и к различным классам студентов.

Мы применяли вышеупомянутую архитектуру на основе модели студента в нескольких ИОС для различных областей. Эти ИОС имеют общую архитектуру, но используют различные наборы модулей и демонстрируют несколько возможных способов применения оверлейной модели студента для адаптации. Ниже мы кратко описываем некоторые ИОС, разработанные нашей группой на базе простой архитектуры, основанной на модели студента.

ITEM/IP – ИОС для изучения вводного программирования (BrusilovskyP.L., 1992b). Элементы знаний проблемной области в ITEM/IP – общие понятия и структуры программирования изучаемого языка программирования. ITEM/IP содержит следующие адаптивные модули: модуль стратегии, который поддерживает адаптивную последовательность обучающих операций, визуальный интерпретатор, который использует текущий уровень знаний студента, чтобы обеспечить адаптивную обработку ошибок и адаптивную визуализацию, и модуль презентации, который генерирует адаптивное описание понятия или структуры при их введении или повторении. Все эти модули обращаются к одним и тем же шести состояниям знаний (пять порогов) для каждого элемента знаний проблемной области в его правилах адаптации2 . Подробности об этих компонентах могут быть найдены в (BrusilovskyP.L., 1992a; BrusilovskyP.L., 1993).

ILED – это ИОС для приобретения навыков в дифференциальном исчислении (Brusilovsky V., 1993). Элементы знаний проблемной области в ILED – правила дифференцирования. ILED включает следующие адаптивные модули: структурный редактор формулы, который играет роль исследовательской среды, обучающая программа, которая может предложить студенту наилучшее действие для обучения (проблема или пример), и тренер, который пошагово следует за действиями студента, диагностируя ошибки и обновляя модель студента. Новыми особенностями ILED по сравнению с ITEM/IP являются: адаптивный редактор структуры3 , адаптивный тренер и способность обучающей программы генерировать (а не выбирать) наилучшее действие для обучения на основе модели студента. Редактор структуры различает два состояния для правил дифференцирования – не приобретенный и приобретенный. Обучающая программа и тренер различают четыре состояния для правил дифференцирования – неизвестный, введенный, известный и приобретенный.

ISIS-Tutor (BrusilovskyP., Pesin L., 1994) – это ИОС для поддержки изучения языка форматирования печати информационно-поисковой системы CDS/ISIS. ISIS-Tutor напоминает архитектуру ITEM/IP во многих деталях. Новый адаптивный компонент ISIS-Tutor – гипермедийное руководство, которое происходит от модуля презентации ITEM /IP. Этот компонент поддерживает как адаптивное представление понятия, так и адаптивную гипермедийную навигацию. Компонент гипермедиа ISIS-Tutor различает три состояния знаний для каждого понятия: "не готов быть изученным", "готов быть изученным" и известный (понятие готово быть изученным, если все предыдущие понятия известны студенту).

Методы адаптации, используемой в вышеупомянутых проектах, довольно просты. Цель не состояла в том, чтобы улучшить известные методы адаптации различных компонентов, а сформировать систему, где большинство модулей может использовать одну и ту же модель студента, чтобы различными способами адаптации своей работы к знаниям данного пользователя. На последующих шагах некоторые простые методы адаптации могут быть заменены более сложными технологиями, разработанными в областях интеллектуальных интерфейсов и интеллектуальных систем справки. Некоторые примеры: адаптированные к пользователю объяснения естественного языка (ParisC.L., 1988), интеллектуальная справка на базе стратегии (BreukerJ., 1990), адаптивная гипермедийная справка (BöckerH.-D.; HohlH.; SchwabT. 1990).

Извлеченные уроки

Наш опыт разработки некоторых ИОС на базе подхода, основанного на модели студента, доказывает, что это, в общем, является хорошим путем для создания интегрированной ИОС. Теперь мы чувствуем, что модель студента может играть роль ядра ИОС. Мы продемонстрировали, что в нескольких областях можно создать ИОС, где большинство модулей может использовать центральную модель студента для адаптации.

С другой стороны, наш опыт показал серьезные проблемы и ограничения нашей простой архитектуры на основе модели студента. Эти ограничения становятся ясными, когда мы начинаем работать над нашими недавними ИОС – ISIS-Tutor (BrusilovskyP., PesinL., 1994) и ITEM /PG (BrusilovskyP., Zyryanov M., 1993). Обе системы применяют гипермедийное руководство как компонент для управляемого студентом просмотра знаний проблемной области. Гипермедиа обеспечивает новое качество, и студенты, работающие с этими системами (в отличие от первоначальной ITEM /IP), проводят много времени, обучаясь с помощью гипермедиа самостоятельно. Было очевидно, что результаты работы студента в гиперсреде должны быть отражены в модели студента. Проблема является более общей: в адаптивной обучающей среде каждый модуль ИОС может не только использовать модель студента для адаптации, но и влиять на модель студента, отражая опыт, который студент демонстрировал при работе с этим модулем. Таким образом, диагностирующий компонент должен освободиться от традиционной ИСО монополии в обновлении модели студента. К сожалению, весьма трудно координировать несколько источников обновления модели студента в простой архитектуре. Мы пробовали сделать это в ISIS-Tutor, но не были удовлетворены результатом.

Другая проблема состоит в том, что модель студента классической ИСО, которую мы унаследовали простым подходом, была разработана, чтобы накопить и обработать информацию о студенте согласно потребностям обучающего модуля. Информация, хранящаяся в центральной модели уместна для целей обучающего или тренирующего модулей, но наш опыт показал, что другие модули ИОС могут нуждаться в совсем другой информации о студенте в зависимости от вида адаптации, который они обеспечивают. Часть этой проблемы может быть решена нашей пороговой методикой. Однако основная проблема состоит в том, что обработка информации о студенте в форму, ориентированную для одного из модулей, часто ведет к потере информации, важной для какого-нибудь другого модуля. Например, компонент гипермедиа нуждается в информации о том, как часто обучающий компонент показывает конкретную страницу гипермедиа студенту. Эта информация использовалась, чтобы обновить какой-нибудь счетчик в модели студента, и затем была стерта. Теперь она не может быть восстановлена из модели студента.

С третьей проблемой мы столкнулись, когда мы пытались сделать модель студента изменяемой студентом. Причина для студента изменить модель студента состоит в том, чтобы настроить адаптацию конкретного компонента. Однако любые изменения в модели студента приводят к


10-09-2015, 03:05


Страницы: 1 2
Разделы сайта