Обращаясь к свойству 1, мы видим, что при изучении математики язык, на котором только и возможно ее изложение и понимание, одновременно и строится, и применяется. При этом тратится огромное количество энергии и времени на выработку чисто технических умений и навыков, которое сродни умению играть гаммы. Разумеется, гаммы не составляют сущности исполнительского мастерства, однако не существует музыкантов-исполнителей, которые не потратили бы на их освоение огромного количества времени и сил. Подобно этому формальное знание математических формул и тождественных преобразований не составляет сущности математики, однако без знания огромного набора формул и свободного владения тождественными преобразованиями невозможно говорить об изучении математики, и уж тем более о творчестве в области математики.
Итак, студент, изучающий математику, работает, как правило, на пределе личных интеллектуальных возможностей и в условиях дефицита времени. При этом он осваивает материал, главным свойством которого является, по крайней мере, на первых порах, его логическая структура. В этих условиях оказывается чрезвычайно затруднительным применение метода интервью, метода организации дискуссий, метапланового метода структурирования проблемы и т.п. Возникает естественный вопрос о способах реализации междисциплинарного подхода в процессе преподаванию математики. К счастью, ряд других свойств математики позволяют реализовать его в специфических формах.
§ 3. Дуалистические свойства науки как основа междисциплинарного подхода к преподаванию конкретных дисциплин
Содержание предыдущих параграфов выявило различие между природой двух групп аргументов, одна из которых свидетельствует о необходимости междисциплинарного подхода к преподаванию математики, а другая говорит о больших ограничениях, накладываемых на возможность его применения. Аргументы, изложенные в первом параграфе, весьма серьезны, однако они совсем не связаны с природой математики. Они могут быть не услышаны или не восприняты преподавателем, сосредоточенным на проблемах собственно математики или даже методики ее преподавания. Это вполне естественно, поскольку как математические, так и методические проблемы столь разнообразны и глубоки, что могут составить содержание профессиональной деятельности исследователя на протяжении десятков лет. В то же время положения второго параграфа отнюдь не носят характера контраргументов против применения междисциплинарного подхода, а лишь указывают на необходимость поиска специфических форм его применения к преподаванию конкретной дисциплины. Эта ситуация «диалога на разных языках» может быть скорректирована, если внутри каждой из конкретных наук - математики, физики, психологии и т.д. - будут найдены свидетельства того, что для полноценного освоения студентом этой науки необходимо раскрытие ее междисциплинарной сущности.
Покинем на время рамки математики и включим проблему в более широкий контекст. Высшее образование, на каких бы теоретических посылках оно ни базировалось, призвано сформировать в сознании студентов адекватный образ науки. В силу этого общие положения любой педагогической концепции, в частности, междисциплинарный подход к преподаванию специальных дисциплин, должны быть тесно связаны с имманентными свойствами науки вообще, не зависящими ни от области науки, ни от исторического периода ее развития, ни от уровня изучаемых или проводимых исследований. Ниже будут рассмотрены некоторые из таких свойств.
Говоря об имманентных свойствах науки, мы будем базироваться на работах А.В. Ястребова [14] и Е.Н. Корнеевой [6]. Первая из них относится к математике, а вторая - к психологии. Замечательно то, что две столь разные, не похожие друг на друга области знания обладают несколькими общими фундаментальными свойствами, которые ниже мы будем называть дуалистическими. Формулируя дуалистические свойства науки, мы не будем повторять аргументацию работ [6, 14], позволившую выявить их. Сосредоточимся на возможности обнаружения тех же свойства в других научных дисциплинах.
Науке присущ деятельностно-продуктивный дуализм. Это означает, что понятие науки включает в себя как деятельность по получению нового знания, так и продукт этой деятельности - сумму полученных к данному моменту научных знаний.
Поскольку образование должно формировать в сознании студентов адекватный образ науки, объективно возникает естественное требование к предметной подготовке: освоение конкретной дисциплины должно быть ориентировано, причем одновременно и в равной мере, как на передачу системы предметных знаний, так и на формирование умений и навыков исследовательской деятельности внутри осваиваемой дисциплины. Другими словами, желательно, чтобы преподаватель математики, физики, биологии, психологии, истории и т.д. не только передавал студенту научные факты, но и умел воспроизводить в процессе преподавания важнейшие черты исследовательской деятельности.
Отметим, что эта задача достаточно сложна. Например, традиционное методическое обеспечение процесса преподавания математики отнюдь не способствует ее решению. Действительно, все суждения и умозаключения в учебниках являются синтетическими, что характерно для завершенной математики, а не для математики-деятельности. Задачники не содержат упражнений, с помощью которых можно было бы организовать наблюдение над математическими объектами с последующей формулировкой и проверкой гипотезы. Отсутствуют задачи на построение обобщений, на обмен информацией, полученной студентами в результате самостоятельной деятельности, и многое другое. Преобладают задачи-приказы, развивающие только конвергентные способности мышления: решить (уравнение, неравенство), доказать (тождество, утверждение), найти (площадь, объем), вычислить (производную, интеграл) и т.п. Подчеркнем, что наша характеристика традиционного методического обеспечения не носит оценочного характера, поскольку оно, как правило, полностью соответствовало целям своего написания. На нем воспитывались многие поколения преподавателей и студентов, включая автора. Мы всего лишь хотим подчеркнуть, что оно ориентировано на формирование у студентов математической техники (см. § 2) и не приспособлено для формирования исследовательских умений.
Науке присущ личностно-социальный дуализм. Это означает, что имеют место несколько дополняющих друг друга фактов: (а) каждый научный результат изобретается лич-но тем или иным конкретным ученым; (б) наука может существовать только благодаря наличию особого социального института - научного сообщества; (в) изобретенный результат становится фактом науки только в результате его принятия научным сообществом; (г) процесс принятия нового результата включает в себя обмен информацией о содержании нового результата и различные виды экспертных оценок.
С организационной точки зрения научное сообщество является весьма сложным образованием с разветвленной иерархией и многокомпонентными отношениями принадлежности. В него входят отдельные ученые, творческие коллективы, исследовательские институты, учебные заведения, научные журналы, органы по присуждению ученых степеней, национальные академии, международные комитеты. Очевидно, что необходимым (и, возможно, достаточным) условием функционирования такой системы является информационный обмен между ее элементами. На практике он весьма интенсивно осуществляется посредством публикаций, конференций, семинаров, системы Интернет и т.д.
Коль скоро в реальном научном мире объективно существует важное явление - информационный обмен результатами личной деятельности - оно должно в той или иной форме отражаться в процессе преподавания. В статьях автора [14, 15] показано, что материал многих традиционных разделов математики может быть преобразован таким образом, что естественным способом его изучения становится групповая форма работы. Более точно, академическая группа студентов разделяется на микрогруппы, каждая из которых выполняет задание преподавателя, получая при этом некий математический результат, а затем происходит обмен этими самостоятельно полученными результатами. Благодаря такой организации учебного процесса, во-первых, иллюстрируется личностно-социальный дуализм науки и, во-вторых, математика, наряду с другими дисциплинами, участвует в выработке целого спектра ключевых компетенций: личной и социальной ответственности, умения планировать, коммуникабельности, языковых навыков, способности к кооперированию и ряда других
Науке присущ индуктивно-дедуктивный дуализм. Это означает, что природа научного умозаключения является одновременно и индуктивной, и дедуктивной. Интуиция, основанная на индуктивных умозаключениях, служит средством первичного получения результата, а логика, основанная на дедукции, служит средством его строгого обоснования.
О соотношении индукции и дедукции, интуиции и логики писали такие выдающиеся математики, как Ж. Адамар, Г. Вейль, Ф. Клейн и многие другие. Особенно много внимания уделяет этому А. Пуанкаре [11. С. 8, 11-21, 159-169, 309-320]. Применительно к математике утверждение об индуктивно-дедуктивном дуализме науки является всего лишь кратким выражением мыслей ее создателей. Для нас сейчас важнее то обстоятельство, что для классиков науки размышления о природе умственных действий в области математики оказываются тесно связанными с вопросами ее преподавания. Говоря об интуиции, А.Пуанкаре пишет, что «без нее молодые умы не могли бы проникнуться пониманием математики; они не научились бы ее любить и увидели в ней лишь пустое словопрение; без нее особенно они никогда не сделались бы способными применять ее» [11. С. 165]. Ключевая мысль А. Пуанкаре указывает на сходство мыслительных процессов исследователя и студента: «Нам нужна способность, которая позволяла бы видеть цель издали, а эта способность есть интуиция. Она необходима исследователю в выборе пути, она не менее необходима для того, кто идет по его следам и хочет знать, почему он выбрал его» [11. С. 166].
Взаимодействие индукции и дедукции имеет особые формы для естественных наук, поскольку двумя важными их методами являются наблюдение и эксперимент. В силу этого задачи наблюдения объектов - неотъемлемая часть преподавания физики (естественной науки, неотделимой от математики), биологии (естественной науки, существенная часть которой развивается вне математики), психологии (науки одновременно и естественной, и гуманитарной). При правильной постановке дела фиксация результатов наблюдения отделена во времени от их интерпретации. Именно на этапе интерпретации исследователь и прибегает к индуктивным рассуждениям, получая при этом обобщающие умозаключения. Иное дело эксперимент, поскольку он базируется на дедуктивном способе познания действительности. Эксперименту всегда предшествует формулировка научной гипотезы, которая вытекает из теоретических положений концепции, принятой исследователем на вооружение. Исходя из нее, исследователь, будь то ученый или студент, вычленяет предмет исследования (зависимая переменная) и условия, факторы, которые он будет менять в процессе работы (фиксируемая, независимая переменная). Далее определяются параметры измерения и оценки обеих переменных. Успеху эксперимента во многом способствует выбор верных методологических оснований, использование методов логико-математической обработки полученных результатов.
Интересно, что по весьма похожей схеме написана знаменитая книга Л.Н. Гумилева «Этногенез и биосфера Земли» [3]. Первые пять частей книги объемом 312 страниц - это интерпретация (индуктивные рассуждения) исторического, географического, биологического и другого материала, в результате которого появляется искомое автором понятие пассионарности как основного фактора этногенеза. Шестая часть объемом 50 станиц - это разъяснение точного смысла термина «пассионарность». Оставшиеся три части объемом 217 страниц - это следствия (дедуктивные рассуждения), которые объясняют ранее описанные явления этногенеза и дают схему развития этнических целостностей.
Науке присущ теоретико-эмпирический дуализм источников ее развития.
Один из аспектов данного положения широко известен и общепризнан. Развитие науки происходит, с одной стороны, благодаря возникающим у общества практическим потребностям, а с другой стороны, благодаря спонтанно возникающим теоретическим идеям внутри самой науки. Меньше обсуждается другой аспект, а именно «кросс-научное влияние», т.е. интериоризация научной дисциплиной представлений, понятий и идей другой области знания. (Ср. устойчивое словосочетание «кросс-культурные коммуникации» с нестандартным выражением «кросс-научное влияние».)
Эмпирико-теоретический дуализм математики означает, что существует два типа движущих идей современной математики: идеи естественно-научного, эмпирического происхождения и теоретические идеи, появившиеся внутри математики. Дж. фон Нейман [10] называет два раздела математики, идеи которых имеют заведомо эмпирическое происхождение, - геометрию и математический анализ. Это именно те ее разделы, к которым как нельзя лучше применимо название «чистая математика». Более того, создание математического анализа «в большей мере, чем что-либо другое, знаменует рождение современной математики». К разделам второго типа, изобретенным для внутреннего, математического потребления, относятся абстрактная алгебра, топология, теория множеств. Двумя удивительными примерами служат дифференциальная геометрия и теория групп, поскольку поначалу их считали абстрактными, не прикладными дисциплинами и лишь впоследствии они нашли широкое применение в физике. Однако и поныне они развиваются в основном в абстрактном духе, далеком от приложений. Кратко говоря, «двоякий лик - подлинное лицо математики, и я не верю, что природу математического мышления можно было бы рассматривать с какой-нибудь единой упрощенной точки зрения, не принося при этом в жертву самую сущность» [10].
Для нас важно, что, по всей вероятности, «двоякий лик» является подлинным лицом не только математики, но и науки вообще. Так, представление о молекулярной природе вещества является неотъемлемой частью современной физики, но пришло в нее из химии. В свою очередь, точное объяснение химических свойств веществ появилось в рамках одного из разделов физики - квантовой механики. Астрономические наблюдения за звездами дают информацию для физики элементарных частиц. Понятие формальной грамматики и контекстно-свободного языка введено в современную лингвистику математиком Н. Хомским. Другой математик, Г. Харди, ввел в биологию понятие идеальной (равновесной) популяции, которое является достаточно точным аналогом понятия идеального газа. Физик Мариотт создал первую теорию поднятия растворов вверх по растению -капиллярную теорию. Он же ввел в биологию представление об автотрофном питании растений. Открытие кислорода химиком Пристли немедленно породило в биологии теорию газообмена в организме.
Разумеется, можно было бы привести и другие примеры. Дело не в их количестве, а в том, что мы можем сделать следующий качественный вывод: дуалистические свойства науки могут служит одной из основ междисциплинарного подхода к процессу преподавания специальных дисциплин.
Применительно к математике сформулируем наш вывод в более категоричной форме: выявление дуалистических свойств науки на математическом материале и в результате математической деятельности способствует улучшению качества математического образования, поскольку а) дает студенту навыки исследовательской работы; б) раскрывает полидисциплинарную природу математики и науки вообще; в) способствует выработке ключевых компетенций посредством занятий математикой.
Остается открытым вопрос о том, возможно ли распространение данного вывода на другие научные дисциплины. Мы убеждены, что ответ является положительным, а также в том, что поиск эффективных способов иллюстрации дуалистических свойств науки в преподавании конкретных дисциплин не окажется чрезмерно трудным.
Список литературы
1. Галицкий М.Л. и др. Сборник задач по алгебре для 8-9 классов. М., 1996.
2. Горенстейн Д. Конечные простые группы. Введение в их классификацию. М.: Мир, 1985.
3. Гумилев Л.Н. Этногенез и биосфера Земли. М.: Институт ДИДИК, 1997.
4. Жезлова С.А. Модерация как инновационная форма повышения квалификации учителей // Дисс .…. канд. пед. наук. Ярославль, 2002.
5. Зимняя И. А. Ключевые компетенции — новая парадигма результатов образования // Высшее образование сегодня. 2003. №5. С. 34-42.
6. Корнеева Е.Н., Ястребов А.В. Инвариантные свойства психологии и их отражение в процессе ее преподавания//Ярославский психологический вестник. Вып. 12. 2004. С 124-134.
7. Крутецкий В.А. Психология математических способностей школьников. М.: Просвещение, 1968.
8. Курош А.Г. Теория групп. М.: Наука, 1967.
9. Лекторский В.А. Субъект, объект, познание. М.: Наука, 1981.
10. Нейман Дж. фон. Математик //Природа. 1983. №2. С. 88-95.
11. Пуанкаре А. О науке. М.: Наука, 1983.
12. Хуторской А.В. Ключевые компетенции и образовательные стандарты: Доклад на отделении философии образования и теории педагогики РАО 23 апреля 2002. Центр «Эйдос» WWW/eidos.ru/news/compet/htm.
13. Эрдниев П.М., Эрдниев Б.П. Укрупнение дидактических единиц в обучении математике. М.: Просвещение, 1986.
14. Ястребов А.В. Дуалистические свойства математики и их отражение в процессе преподавания // Ярославский педагогический вестник. 2001. № 1. С. 48-53.
15. Ястребов А.В. Сценарии групповой работы при изучении математики // Вопросы методики обучения математике в средней школе: Учебное пособие. Ярославль: Изд-во ЯГПУ, 2002. С. 113-121.
10-09-2015, 03:52