Украинская государственная строительная корпорация "Укрстрой" николаевский строительный колледж Специальность 7090214 "Эксплуатация и ремонт подъёмно – транспортных, строительных, дорожных машин и оборудования." КУРСОВАЯ РАБОТА По предмету: "Электротехника, электроника и микропроцессорная техника". На тему: " Расчет электрического привода механизмаподъема башенного крана". Выполнил: студент гр.КСМ-46 Пигарёв С.Н. Руководитель: Жилин В.Н. Николаев 1998 г. |
||||||||||||
Содержание. Cтр. 1. Выбор типа электродвигателя. 2 2. Предварительный выбор типа электродвигателя. 3 3. Определение приведённого момента электропривода. 4 4. Определение приведённого момента сопротивления рабочей 5 машины. 5. Определние времени пуска и торможения привода. 6 6. Определение пути, пройденного рабочим органом за время 7 пуска и торможения. 7. Определение пути, пройденного рабочим органом с 8 установившейся скоростью. 8. Определение времени равномерного хода рабочей машины. 9 9. Определение времени паузы (исходя из условий технологического 9 процесса. 10. Определение продолжительности включения. 10 11. Построение нагрузочной диаграммы. 11 12. Определение мощности двигателя из условий нагрева. 12 13. Проверка выбранного электродвигателя на перегрузочную 13 способность и по пусковому моменту. 14. Выбор данных двигателя по каталогу. 14 15. Построение механической характеристики двигателя. 15 16. Расчёт пускового реостата. 18 17. Выбор схемы управления и защиты двигателя. 21 18. Вычерчивание схемы управления и описание её работы 23 (подбор аппаратуры управления по каталогу). |
||||||||||||
Изм | Лист | № Докум. | Подпись | Дата | ||||||||
Разраб. | Пигарёв | Расчет электрического привода механизма башенного крана. | Литер. | Лист | Листов | |||||||
Провер. | Жилин | У | 1 | |||||||||
НСК КСМ-46 |
Введение.
Рабочие механизмы грузоподъемных кранов обеспечивают перемещение грузов в трех взаимно перпендикулярных направлениях. Подъем груза осуществляется механизмом подъема.
На кранах может быть установлено до трех механизмов подъема различной грузоподъемности.
Перемещение груза по горизонтали на мостовых и козловых кранах осуществляется с помощью грузовой тележки и самого крана, а на стреловых кранах – с помощью механизмов поворота, изменения вылета стрелы или грузовой тележкой стрелы. Всеми механизмами кранов управляют из одного места – кабины или поста управления.
Конструкции башенных кранов постоянно усовершенствуют, что позволяет расширить область их применения. Например, первые краны имели грузоподъемность 0.5…1.5 т., грузовой момент до 30 т*м., высоту подъема 20…30 м., сейчас работают краны грузоподъемностью до 50 т., грузовым моментом до 1000 т*м., высотой подъема до 150 м.
Для повышения производительности кранов на новых машинах увеличены скорости рабочих движений, а также повышена мобильность кранов.
1. Выбор типа электродвигателя.
На кранах применяют главным образом трехфазные асинхронные двигатели перемен-ного тока.
По способу выполнения обмотки ротора эти двигатели разделяют на электродвигатели с короткозамкнутым и с фазным роторами.
Двигатели с короткозамкнутым ротором применяются в электроприводе, где не требует-
ся регулировать частоту вращения, или в качестве второго (вспомогательного) двигателя для получения пониженных скоростей механизмов крана. Недостатком электродвигателей с корот-
козамкнутым ротором является большой пусковой ток, в 5…7 раз превышающий ток двигателя
при работе с номинальной нагрузкой.
Двигатели с фазным ротором используются в приводе, где требуется регулировать частоту вращения. Включение в цепь ротора пускорегулирующего реостата позволяет уменьшить пусковой ток, увеличить пусковой момент и изменить механическую характеристику двигателя.
Они имеют значительные преимущества перед двигателями других типов: возможности выбора мощности в широком диапазоне, получения значительного диапазона частот вращения с плавным регулированием и осуществления автоматизации производственного процесса простыми средствами; быстрота пуска и остановки; большой срок службы; простота ремонта и эксплуатации; легкость подвода энергии.
Двигатели постоянного тока тяжелее, дороже и сложнее устроены, чем одинаковые по мощности трехфазные асинхронные. Достоинства двигателей постоянного тока является возможность плавного и глубокого регулирования частоты вращения, поэтому такие двигатели применяют в специальных схемах электропривода кранов для высотного строительства.
Крановые двигатели предназначены для работы, как в помещении, так и на открытом воздухе, поэтому их выполняют закрытыми с самовентиляцией (асинхронные двигатели) или с независимой вентиляцией (двигатели постоянного тока) и с влагостойкой изоляцией.
Так как двигатели рассчитаны на тяжелые условия работы, их изготовляют повышенной прочности. Двигатели допускают кратковременные перегрузки и имеют большие пусковые и максимальные моменты, которые повышают номинальные моменты в 2.3…3.0 раза; имеют относительно небольшие пусковые токи и малое время разгона; рассчитаны на кратковременные режимы работы.
Исходя из всего вышеизложенного, для механизма подъема крана наиболее подходит трехфазный асинхронный двигатель переменного тока с фазным ротором в закрытом исполнении и рассчитанный на повторно-кратковременный режим работы.
2. Предварительный выбор мощности двигателя.
Предварительный выбор мощности двигателя для механизма подъёма башенного крана осуществляется по формуле:
где Q – вес поднимаемого груза (кг.)
Q0 – вес грузозахватного приспособления,
кг;
V – скорость подъёма груза ;
;
h - коэффициент полезного действия механизма подъёма.
кВт.
По каталогу находим ближайшее значение мощности к полученному:
Рн = 22 кВт
Исходя из расчётной мощности двигателя, выбираю для механизма подъёма башенного крана асинхронный двигатель с фазным ротором серии МТ 51 – 8 с напряжением 380 В.
3. Определение приведённого момента электропривода.
Маховой момент системы электропривода, приведённый к валу двигателя из уравнения:
где: a - коэффициент, учитывающий маховые массы редуктора (находится по каталогу).
Обычно он лежит в пределах от 1.1 до 1.15.
В данном случае принимаем a = 1.1.
GD2 дв – маховый момент предварительно выбранного двигателя ;
GD2 дв = 4.4 .
GD2 тш – маховый момент тормозного шкива (если таковой имеется) ;
GD2 тш = 3.88 ().
GD2 м – маховый момент соединительной муфты ;
GD2 м = 1.
GD2 рм – максимальный момент рабочей машины (барабана) ;
GD2 рм =
где m – масса барабана, m = 334 кг;
R – радиус барабана, R = 0.2 м.
следовательно, GD2 рм = 334.
G – сила сопротивления поступательно движущегося элемента (Н);
где Q+Q0 – вес поднимаемого груза с крюком (кг.);
g – ускорение свободного падения (постоянная величина), g = 9.8 м/с2 ;
H.
nдв - номинальная скорость вращения двигателя (об/мин) ;
nдв = 723 об/мин.
i – передаточное отношение
где nрм – скорость вращения рабочей машины (барабана)
где m – число полиспастов (m=2);
Dб – диаметр барабана (Dб =0.4 м)
p = 3.14
V – скорость поступательно движущегося элемента
об/мин;
4. Определение приведенного момента сопротивления рабочей машины.
При подъеме груза величина момента сопротивления, когда поток энергии идет от двигателя к рабочей машине, находится из уравнения:
где i – передаточное отношение (i = 25.22);
h - к.п.д. передачи (h= 0.84)
Мрм = момент сопротивления на валу рабочей машины
где Q+Q0 – вес груза с крюком (кг) (Q+Q0 = 5775 кг)
Dб – диаметр барабана (Dб = 0.4 м)
m – число полиспастов (m = 2)
h - кпд электропривода (h = 0.84)
5. Определение времени пуска и торможения привода.
Время пуска и торможения двигателя определяется по формулам:
где GD2 – маховый момент системы электропривода (GD2 = 12.84 );
nдв – частота вращения двигателя (nдв = 723 );
Мj – динамический момент электропривода
Знак плюс у момента Мg берётся в том случае, когда двигатель работает в двигательном режиме, а знак минус – при тормозном режиме.
Знак плюс у момента сопротивления выбирается в том случае, когда рабочая машина по-
могает движению системы (при опускании груза), а знак минус, если рабочая машина мешает движению системы.
Величина момента двигателя находится из уравнения:
Мg = bМн
где b - коэффициент, зависящий от типа двигателя и условия пуска.
Для двигателя постоянного тока и асинхронных двигателей с фазным ротором
b = 1.4 ¸ 1.6.
Для данного двигателя b = 1.6.
где Мн – номинальный момент двигателя
Рн – номинальная мощность двигателя (Рн = 22 кВт);
nдв – частота вращения двигателя (nдв = 723)
Мj1 = Мg – Мс = 47.47 – 32.45 = 15.02
Мj2 = - Мg – Мс = - 47.47 – 32.45 = - 79.92
Время пуска
с;
Время торможения
с.
В дальнейших расчётах знак минус, стоящий у времени торможения, не учитывается.
6. Определение пути, пройденного рабочим органом за время пуска и
торможения.
Путь, пройденный рабочим органом за время пускаи торможения, вычисляется по формулам:
где tn – время пуска привода (tn = 1.64 с);
tm – время торможения привода (tm = 0.31 с);
V – скорость поступательно движущегося элемента (V = 0.3 м/сек).
м;
м.
7. Определение пути, пройденного рабочим органом
с установившейся скоростью.
Путь, пройденный рабочим органом, с установившейся скоростью вычисляется по формуле:
где Н – высота подъёма башенного крана – расстояние по вертикали от уровня стоянки крана до грузозахватного органа, находящегося в верхнем рабочем положении. Под уровнем стоянки поднимается горизонтальная поверхность основания (например, поверхность головок рельсов для рельсовых кранов, путь перемещения гусеничных и пневмоколёсных кранов, нижняя опора самоподъёмного крана), на которую опирается неповоротная часть крана. (Принимаем Н =16 м)
Sn – путь, пройденный рабочим органом за время пуска (Sn = 0.25 м)
Sm – путь, пройденный рабочим органом за время торможения (Sm = 0.05 м)
Sp = H – (Sn + Sm ) = 16 – (0.25 + 0.05) = 15.7 м.
8. Определение времени равномерного хода рабочей машины.
Время равномерного хода рабочей машины можно определить по формуле:
где Sp – путь, пройденный рабочим органом с установившейся скоростью (Sp = 15.7 м);
V – скорость поступательно движущегося элемента (V = 0.3 ).
сек.
9. Определение времени паузы (исходя из условий
технологического процесса).
Исходя из условий технологического процесса принимаем время паузы равным:
t0 = 210c = 3.5 мин
что удовлетворяет техническим требованиям выбранного двигателя.
10. Определение продолжительности включения.
Время одного включения двигателя, его работы и последующей остановки, называется рабочим циклом. Продолжительность цикла обычно не более 10 мин. Промышленность выпускает крановые электродвигатели, рассчитанные на 15, 25, 40 и 60% - ную относительную продолжительность включения.
Величина ПВ показывает, сколько времени двигатель находится включенным в течение цикла:
Обычно крановые двигатели рассчитаны на работу при 25% ПВ, но один и тот же двигатель может работать и при 15 % ПВ, и при 40% ПВ, но при этом должна соответственно изменяться его нагрузка.
В данном случае
11. Построение нагрузочной диаграммы.
Нагрузочной диаграммой называется зависимость силы тока, момента, мощности в функции времени.
Для выбранного двигателя по полученным данным строим нагрузочную диаграмму М =¦(t) учитывая реальные времена протекания переходных процессов и величины пусковых и тормозных моментов, а также реальные значения пауз между временами работы двигателя.
где tn
- время пуска;
tp - время работы;
tm - время торможения;
t0 - время паузы.
Mn - момент пуска;
Mp - момент работы;
Mm - момент торможения.
12. Определение мощности двигателя из условий нагрева.
Электрические машины не должны нагреваться свыше допустимых пределов. При пере-
греве машины изоляция обмоточных проводов быстро стареет, теряет изоляционные свойства, становится хрупкой и при дальнейшей работе может обуглиться, что может привести к короткому замыканию и выходу машины из строя.
По нагрузочной диаграмме определяем эквивалентный по нагреву момент двигателя за время его работы без учёта времени пауз
где Мn и Мm – моменты, развиваемые двигателем при пуске и торможении.
Эквивалентная мощность
После этого производится пересчёт эквивалентной мощности на ближайшую, стандартную продолжительность включения
где ПВд – действительная продолжительность включения двигателя
ПВк – ближайшая по величине стандартная продолжительность включения по отношению к действительной ПВ.
Если полученная в результате расчёта мощность Рк < Рн двигатель, который был предварительно выбран, по условиям нагрева проходит.
Если же Рк > Рн , то необходимо задаваться следующим габаритом двигателя и расчёт производить вновь.
Определяем эквивалентный момент:
где Mn = 1.3 Mн = 1.3 . 29.67 = 38.57 (кг . м)
где k – поправочный коэффициент (k = 1.5);
(Q+Q0 ) – вес груза с грузозахватным приспособлением;
Dб – диаметр барабана;
m – число полиспастов;
i – передаточное отношение;
h - кпд привода.
Эквивалентная мощность:
Поскольку Рк = 21.6 кВт < Рн = 22 кВт то двигатель по условию нагрева проходит.
13. Проверка выбранного электродвигателя на перегрузочную способность и по пусковому моменту.
Выбранный по каталогу двигатель (МТ51-8) проверяется на перегрузочную способность на основании неравенства:
где l - перегрузочная способность двигателя (выбирается по каталогу), l = 3;
Мн – номинальный момент (Мн =29.67 кГ. м )
Мmax - максимальный момент двигателя (выбирается по каталогу ), Мmax = 85 кГ. м.
Проверка по пусковому моменту осуществляется на основании неравенства:
где - кратность пускового момента (берется из каталога), =2.8;
Мс – момент сопротивления (Мс = 32,45 кГ. м).
Если выбранный двигатель не проходит по перегрузке или пусковому моменту, то выбирается двигатель большего габарита, который удовлетворял бы этим неравенствам:
3. 29.67 = 58 кГ. м
двигатель проходит на перегрузочную способность
0.7 . 2.8 . 29.67 = 58 кГ. м > 32.45 кГ. м
двигатель проходит по пусковому моменту.
14. Выбор данных двигателя по каталогу.
Выписываем все каталожные данные двигателя МТ 51- 8
Величина | Обозначение | Значение |
Продолжительность включения Мощность на валу Скорость вращения Линейный ток статора Напряжение сети Коэффициент мощности КПД Ток ротора Кратность максимального момента Напряжение между кольцами ротора Маховый момент ротора |
ПВ Рн nдв I1 н U1 Кр h I2 н
U2 GDдв 2 |
25% 22 кВт 723 об/мин 56.5 А 380 В 0.7 0.84 70.5 А 3 197 В 4.4 кГ. м2 |
15. Построение естественной механической характеристики двигателя.
Механической характеристикой двигателя называется, зависимость частоты вращения n от момента М нагрузки на валу.
Различают естественные и искусственные характеристики электродвигателей.
Естественноймеханической характеристикой называется – зависимость оборотов двигателя от момента на валу при номинальных условиях работы двигателя в отношении его параметров (номинальные напряжения, частота, сопротивление и тому подобное). Изменение одного или нескольких параметров вызывает соответствующее изменение механической характеристики двигателя. Такая механическая характеристика называется искусственной.
Для построения уравнения механической характеристики асинхронного двигателя воспользуемся формулой Клоса:
где Мk – критический момент двигателя;
Sk – критическое скольжение двигателя;
l - перегрузочная способность двигателя (l = 3);
Sн – номинальное скольжение двигателя
где nн – скорость вращения ротора;
n1 – синхронная скорость поля статора;
где f – промышленная частота тока питающей сети, (f = 50 Гц);
Р – число пар полюсов (для двигателя МТ 51 – 8 Р=4)
Номинальное скольжение двигателя МТ 51 - 8
Критическое скольжение двигателя
Критический момент двигателя
Для построения характеристики в координатах переходят от скольжения к числу оборотов на основании уравнения
n = n1 (1 – S)
Скольжением задаются в пределах от 0 до 1.
Так для S = 0 n = 750 . (1 – 0) = 750 об/мин;
S = 0.1 n = 750 . (1 – 0.1) = 675 об/мин;
S =
29-04-2015, 04:13