Датчики потока

наличие дифракционного распределения интенсивности ультразвуковой волны по аналогии с апертурной дифракцией в оптике. В области ближнего поля пучок имеет практически цилиндрическую форму, соответствующую геометрии излучателя, и его уширение мало. Однако распределение интенсивности в пучке неоднородно, поскольку здесь возникают многочисленные интерференционные максимумы и минимумы. Расстояние от излучателя, определяющего характерный размер (dnf ) области ближнего поля, находится по формуле

, (1.12)

где D - диаметр преобразователя и l - длина волны.

В области дальнего поля пучок расходится, причем интенсивность ультразвуковой волны в пучке изменяется обратно пропорционально квадрату расстояния от преобразователя. Для угла расходимости пучка имеем

sinf=1.2l/D, (1.13)

Эффект расходимости пучка ухудшает пространственное разрешение, поэтому область дальнего поля использовать не рекомендуется. Для обеспечения работы в области ближнего поля нужны большие преобразователи и высокие рабочие частоты. В промышленных применениях пространственное разрешение при измерении потока можно получить, выбирая рабочую частоту и размер преобразователя таким образом, чтобы размер области ближнего поля приближенно соответствовал диаметру потокопровода (трубы, трубопровода).

Правильный выбор рабочей частоты очень важен для измерителей потока крови. Для пучка с постоянным поперечным сечением мощность ультразвуковой волны экспоненциально спадает с расстоянием из-за ее поглощения в ткани. С этой точки зрения предпочтительнее низкие рабочие частоты, поскольку коэффициент поглощения ультразвука квазилинейным образом возрастает с увеличением частоты. С другой стороны, наиболее распространенные ультразвуковые измерители потока - доплеровские датчики потока - работают на принципе детектирования мощности ультразвуковой волны, рассеиваемой движущимися красными кровяными тельцами, причем рассеиваемая мощность пропорциональна четвертой степени частоты. Таким образом, в этих измерителях потока для увеличения детектируемой мощности необходимо увеличивать рабочую частоту. Компромисс достигается при выборе рабочей частоты в диапазоне от 2 до 10 MГц.

Датчик потока на принципе измерения времени прохождения сигнала.

Датчик потока, работающий на принципе измерения времени прохождения сигнала - один из простейших ультразвуковых измерителей потока. Он широко используется в промышленности и пригоден также для респираторных измерений и измерений потока крови. На рис. 5 иллюстрируются два возможных способа расположения преобразователей в датчике этого типа. Способ расположения, представленный на рис. 5(а) , имеет очевидное преимущество, заключающееся в возможности закреплять преобразователи на внешней поверхности трубы или кровеносного сосуда, что исключает ограничение потока. На рис. 5(б) показаны преобразователи, изолированные от трубы; они используются для высокотемпературных измерений (например, при газификации каменного угля). В этом случае связь преобразователей со средой осуществляется с помощью буферных стержней или волноводов.

Для конфигурации измерителя потока, показанной на рис. 5(б), эффективная скорость ультразвука в кровеносном сосуде или трубе равна скорости звука с относительно текучей среды плюс компонента, связанная с величиной u - скоростью потока, усредненной вдоль пути распространения ультразвуковой волны. Для ламинированного потока u=1,33, для турбулентного - u=1,07, где - скорость, усредненная по площади поперечного сечения трубы или кровеносного сосуда. Разница в значениях u и объясняется тем, что ультразвук распространяется вдоль одной линии, а не охватывает все поперечное сечение потока. Формула для времени прохождения ультразвукового сигнала между преобразователями вверх по течению (+) и вниз по течению (-) имеет вид

, (1.14)

Из этой формулы следует, что время прохождения меньше для случая распространения ультразвуковой волны “вместе с потоком”, т.е. вниз по течению.

В одной из модификаций этого метода используются короткие акустические импульсы, попеременно пересылаемые в направлении потока и против него, для того чтобы получить значение разности Dt между временем прохождения сигнала вверх по течению и временем его прохождения вниз по течению. Величина Dt пропорциональна средней скорости u и равна

. (1.15)

Эту величину можно измерить, используя два преобразователя, расположенные в соответствии с рис. и попеременно выполняющие функции излучателя и приемника, или используя излучатель и приемник на каждой стороне кровеносного сосуда или трубы. Единственным препятствием на пути практической реализации данного метода является малость величины Dt, значения которой лежат в наносекундном диапазоне; поэтому для достижения адекватной стабильности необходимо сложное электронное оборудование.

На рис. 5(б) представлен более простой вариант ультразвукового датчика потока на принципе измерения времени прохождения сигнала, используемой в некоторых промышленных системах. При подстановке в выражение (1.15) =0 получаем Dt=2Du/c. Скорость звука c может изменяться с температурой, и с этим могут быть связаны значительные погрешности измерения Dt, если учесть, что в формулу для Dt входит не c, а c2 .

Большинство стандартных датчиков потока, работающих на принципе измерения времени прохождения сигнала, выполнены по схеме, представленной на рис. 5(а). Преимущества таких датчиков (измерителей) потока заключается в следующем: 1) с их помощью можно измерять потоки самых различных жидкостей и газов, поскольку для проведения измерений не требуется наличие в текучей среде частиц, отражающих ультразвук; 2) они позволяют определять направление потока; 3) их показания сравнительно нечувствительны к изменениям вязкости, температуры и плотностей текучей cреды; 4) из всех серийно выпускаемых измерителей потока промышленные устройства этого типа обеспечивают наивысшую точность измерений.

Рассматриваемые датчики потока пригодны для измерения потоков жидкостей во многих промышленных применениях. В группу текучих сред, с которыми могут работать эти датчики, входят вода, молоко, масло, очищенные сточные воды, фармацевтические жидкости, жидкая бумажная масса. Измеритель потока серии 240, выпускаемый фирмой Controlotron Corp., - пример ультразвукового измерителя потока для промышленных применений, закрепляемого на внешней поверхности трубопровода. Это устройство позволяет измерять скорость потока жидкости в диапазоне от 0,3 мм/c до 9,14 м/с с точностью до 1% и может работать с трубой любого диаметра от 2,54 см до 1,52 м независимо от материала трубы и толщины ее стенок. Согласно спецификации, предоставляемой фирмой Controlotron, типичное разрешенияе измерителя серии 240 составляет 1,52 мм/с.

Ультразвуковые измерители потока были опробованы также в качестве пневмотахометров - для измерения мгновенного значения объемного расхода вдыхаемого или выдыхаемого газа. Ультразвуковые пневмотахометры имеют следующие теоретические преимущества: 1) высокое быстродействие; 2) широкий динамический диапазон; 3) отсутствие движущихся частей; 4) пренебрежимо малое влияние на поток; 5) естественную двунаправленность; 6) легкость очистки и стерилизации. В настоящее время ультразвуковые пневмотахометры находятся все еще в стадии разработки. Есть несколько проблем, препятствующих успешному внедрению этих устройств: 1) низкая акустическая эффективность передачи ультразвука через газы; 2) широкий диапазон изменений состава, температуры и влажности газа; 3) неудовлетворительное понимание природы ультразвукового поля и характера его взаимодействия с движущимся газом .

Доплеровские измерители потока непрерывного действия.

На рис. 5,в показано, как могут располагаться преобразователи в доплеровских измерителях потока непрерывного действия. В этих измерителях потока используется известный эффект изменения (понижения) частоты звука, детектируемого движущимся приемником, удаляющимся от неподвижного источника звука (эффект Доплера). Если излучатель и приемник неподвижны, а движется объект (частица в текучей среде), отражающий ультразвуковую волну, то обусловленный эффектом Доплера сдвиг частоты при симметричном расположении преобразователей по отношению к аксиально-симметричному потоку рассчитывается по формуле

, (1.16)

где fd - доплеровский сдвиг частоты; f0 - частота излучаемой ультрозвуковой волны; u - скорость объекта (частицы в текучей сркде); c - скорость звука; q - угол между направлением излучения (приема) ультрозвуковой волны и осью трубы или кровеносного сосуда. Если поток не имеет аксиальной симметрии или преобразователи расположены несимметрично, то в формулу (1.16) нужно вводить дополнительный тригонометрический коэффициент.

Самое важное преимущество доплеровского измерителя потока непрерывного действия - возможность измерения кровотока с помощью преобразователей, расположенных на поверхности тела с одной стороны кровеносного сосуда. Измерители потока этого типа могут работать с жидкостями, содержащими включения газов или твердых тел. Можно указать и ряд других преимуществ этих устройств: 1) временные задержки сигнала в них минимальны и определяются главным образом характеристиками фильтров; 2) при измерении кровотока помехи от сигнала электрокардиограммы (ЭКГ) незначительны; 3) такие устройства можно устанавливать в дешевых регуляторах потока.

При использовании доплеровского измерителя потока непрерывного действия для получения сигнала доплеровского сдвига необходимо наличие в текучей среде каких-либо частиц. Сигнал доплеровского сдвига не является одночастотным гармоническим сигналом, что обусловлено рядом причин:

1. Профиль распределения скорости по поперечному сечению потока (профиль потока) неоднороден. Частицы движутся с различными скоростями, генерируя различные по частоте доплеровские сдвиги.

2. Частица отражает ультразвуковую волну в течении короткого промежутка времени.

3. Хаотическое вращение частиц и турбулентность вызывают различные доплеровские сдвиги.

Два других недостатка доплеровского измерителя потока непрерывного действия - практически полное отсутствие информации о профиле потока и невозможность определения направления потока без дополнительной обработки сигнала.

Импульсные доплеровские измерители потока.

Импульсный доплеровский измеритель потока работает в радарном режиме и выдает информацию о профиле потока текучей среды. На рис. 6 иллюстрируется принцип работы этого устройства. Преобразователь возбуждается короткими посылками сигнала несущей частоты от генератора. Этот преобразователь выполняет функции излучателя и приемника; отражаемый сигнал с доплеровским сдвигом принимается с некоторой временной задержкой относительно момента излучения первичного сигнала. Временный интервал между моментами излучения и приема сигнала является непосредственным указателем расстояния до отражающей частицы (дальности). Следовательно, можно получить полную “развертку” отражений сигнала поперек трубы или кровеносного сосуда. Профиль скорости в поперечном сечении кровеносного сосуда получается в результате регистрации доплеровского сдвига сигнала при различных временных задержках. С помощью импульсного доплеровского измерителя потока можно оценить диаметр кровеносного сосуда. Как видно из рис. 6, принимаемые сигналы А и С обусловлены отражениями от ближней и дальней стенок сосуда соответственно. Расстояние между точками, где происходят эти отражения, непосредственно связано через простые геометрические соотношения с диаметром сосуда.

Аналогичный принцип измерения лежит в основе метода ультразвукового сканирования в амплитудном режиме (А-режиме) и метода эхо-кардиографии. Ультразвуковой преобразователь устанавливается напротив участка тела или органа, подлежащего сканированию. Этот преобразователь излучает ультразвуковой сигнал, испытывающий отражение на любой неоднородности ткани вдоль направления сканирования. Задержка между временем излучения и приема сигнала может быть использована для определения места локализации этой неоднородности вдоль определенного пути сканирования.

Длительность излучаемого импульса является важным фактором при использовании импульсного доплеровского измерителя для регистрации кровотока. В идеале это должен быть очень короткий импульс, чтобы получить хорошее разрешение по расстоянию. С другой стороны, для достижения достаточно высокого значения отношения сигнал/шум и хорошего разрешения по скорости длительность этого импульса должна быть достаточно велика. Типичный компромиссный вариант - использование импульсов с частотой повторения 8 МГц и длительностью 1 мкс.

Доплеровским измерительным системам, работающим в импульсном режиме, присуще внутреннее ограничение. Оно выражается в том, что при заданной дальности ограничен диапазон измеряемых скоростей. Это вынуждает использовать импульсы с меньшей частотой повторения fr . Действительно, для устранения неопределенности в определении расстояния (дальности) эхо-сигнал от каждого импульса должен быть проанализирован до момента посылки следующего импульса. Следовательно,

, (1.17)

где Rm - максимальная определяемая при данном измерении дальность. Теорема о дискретизации утверждает необходимость выполнения условия

fr >2fd . (1.18)

Из соотношений (1.17), (1.18) и (1.16) получаем

, (1.19)

т.е. произведение максимальной дальности на максимальную скорость - ограниченная скорость. Это означает, что нельзя измерить высокие скорости при больших расстояниях до отражающего объекта. Спектральное уширение, которое может привести к появлению в сигнале спектральных составляющих с частотами, превышающими несущую частоту, а также неидеальность характеристик фильтров нижних частот, используемых для исключения эффекта наложения спектров, приводит к еще более жестким ограничениями по сравнению с тем, которое определяется формулой (1.19).

В импульсных доплеровских системах преобразователи имеют более сложную конструкцию, чем в доплеровских системах непрерывного действия. Любой кристаллический преобразователь характеризуется высокой добротностью Q (узкой частотной характеристикой) и поэтому после окончания возбуждающего электрического сигнала довольно долго осциллирует на своей резонансной частоте. Импульсный доплеровский преобразователь модифицируется путем добавления к нему спереди или сзади массивного демпфера, что обеспечивает уменьшение (уширение частотной характеристики) кристалла. Типичные значения модифицированной добротности - от 5 до 15. При использовании одного общего преобразователя в качестве излучателя и приемника отключение излучателя осуществляется с помощью логического элемента (вентиля). Однокаскадный логический элемент не обеспечивает надлежащей развязки мощного сигнала, возбуждающего излучатель, от исключительно слабого принимаемого сигнала. Проблема развязки решается последовательным включением двух логических элементов.

При использовании импульсных доплеровских систем возникают дополнительные проблемы и с обработкой принимаемого сигнала. В система должна быть предусмотрена некоторая схема, обеспечивающая защиту усилителя высокой частоты от перегрузок во время передачи сигнала и предотвращающая поступление напряжения генератора на вход этого усилителя во время приема сигнала. Примером такой схемы является диодная структура, обладающая низким сопротивлением для высокоуровневого передаваемого сигнала и высоким сопротивлением для слабого принимаемого сигнала. Измерение профилей потока в реальном масштабе времени достигается путем использования 16 логических элементов (селекторов дальности), задающих различные временные задержки для принимаемого сигнала. На выходе измерительного устройства имеем при этом 16 “параллельных” сигналов, соответствующих различным точкам в поперечном сечении трубы или кровеносного сосуда и определяющих временную зависимость локальных скоростей потока в этих точках. Профиль скорости формируется путем быстрого сканирования по этим 16 каналам.

Главное преимущество импульсных доплеровских измерителей потока - возможность получения информации о профиле потока. Кроме того, в этих устройствах детектируются сигналы, отражаемые частицами из малых объемов текучей среды (в силу сканирования по поперечному сечению потока), и поэтому на детекторы нуля поступают сигналы с узким частотным спектром, что является другим важным преимуществом измерителей потока этого типа. И наконец, поскольку для импульсного доплеровского измерителя потока нужен только один преобразователь, выполняющий функции как излучателя, так и приемника, то это - идеальное устройство для измерений с помощью катетера. Такие измерители используются для регистрации кровотока в различных участках кровеносной системы.

Методологическая часть.

Тепловые измерители потока

В тепловых измерителях потока используется нагреваемый элемент, устанавливаемый на пути потока жидкости или газа и обтекаемый этим потоком. Тепло передается от этого элемента к текучей среде с интенсивностью (Р, Вт), определяемой разностью температур (DТ, о С) элемента итекучей среды, удельной теплоемкостью (с, Дж/кг×К) и скоростью (u, м/с) последней, а также профилем потока. На принципе передачи тепла от нагреваемого элемента в поток основаны два метода измерения потока. В конвекционном методе измеряется количество тепла, рассеиваемого нагревательным элементом, тогда как в методе стационарной тепловой инжекции определяется изменение температуры текучей среды, связанное с инжекцией тепла в поток.

Инжекционные измерители потока.

Средний массовый расход любой текучей среды можно определить путем инжекции в поток известного количества тепла и измерения изменения температуры этой среды за нагревателем (ниже по течению). Средний массовый расход рассчитывается по формуле

, (2.1)

где F - массовый расход (кг/с); q - скорость стационарной инжекции тепла (Вт); cb - удельная теплоемкость текучей среды (Дж/кг×К); Tu - температура текучей среды перед нагревателем - выше по течению; Td - температура текучей среды за нагревателем - ниже по течению.

Значения температур, которые входят в формулу (2.1), можно измерить с помощью термисторов или термопар. Хотя метод стационарной тепловой инжекции весьма прост, но на практике при его реализации довольно трудно получить хорошую точность по двум следующим причинам: 1) могут иметь место паразитные утечки тепла, например, через стенки потокопровода, 2) датчик температуры, расположенный выше по течению, должен находиться достаточно далеко от нагревателя, где устанавливается однородное распределение температуры, но это еще больше осложняет проблему паразитных утечек тепла.

Конвекционные измерители потока

Конвекционный измеритель потока обеспечивает определение локальной скорости жидкости или газа путем измерения количества тепла, которое рассеивает нагреваемый элемент, обтекаемый потоком. Измерение расхода можно осуществить чисто электронным путем, применяя в качестве датчика самонагревающийся резистор. Сопротивление такого резистора изменяется вследствии охлаждения потоком, в результате чего резистор действует как датчик расхода. В этих условиях теплоотвод осуществляется несколькими путями:

PL 1 - теплопроводность через среду потока к стенкам трубы; PL1 ~T1 ;

PL2 - теплоотводность через механический держатель и электропровода; Pl2 ~T1 ;

Pstr - теплопередача путем излучения (по закону Стефана- Больцмана Pstr ~T1 4 );

Pk1 - теплопередача путем свободной конвекции; Pk1 ~T1 ;

Pk2 - теплопередача путем вынужденной конвекции (поток):

, (2.2)

где Q - объемный расход.

В итоге омический элемент датчика оказывается в состоянии теплового равновесия, т.е. количество подводимой энергии равно количеству отводимой.

Поскольку проводимая электрическая энергия равна I2 R(T1 ), равновесие определяется выражением

I2 R(T1 )= PL 1 + PL 2 + Pstr + Pk1 + Pk2 , (2.3)

где Pk2 представляет собой собственно измеряемую величину, так как она определяется потоком в канале. Поэтому все остальные формы теплопередачи могут быть выражены константой. В этом случае получается так называемое уравнение Кинга

I2 R(T1 )=( a1 +a2 Q1/2 )(Tå -Tf ), (2.4)

В этом уравнении a1 и a2 можно считать аппаратурными параметрами (структурой нагреваемого элемента и удельной теплоемкости текучей среды), остающимися постоянными в известных пределах.

Если элемент и текучая среда находятся в тепловом равновесии, то количество теплоты, ежесекундно передаваемого в поток, равно джоулевой мощности, выделяемой в элементе:

P=I2 R


29-04-2015, 04:01


Страницы: 1 2 3
Разделы сайта