Использование лазеров в информационных технологиях

Спектральная характеристика затухания кварцевого волокна, слабо легированного Ge.

Вследствие высокой несущей частоты светового пучка можно использовать для модуляции практически очень высокие частоты. Используемую для передачи информации полосу частот называют шириной полосы частот сигнала, она может достигать несколько гигагерц. Тем самым возможна одновременная передача очень большого объема информации.

Для достижения хороших характеристик передачи оптического волновода существенными являются:

- малые изменения геометрических размеров, а также хорошая центровка сердцевины;

- малые изменения профиля показателя преломления.

Рис. 12. Затухание и дисперсия одномодового стандартного световода.

Для применения в оптических системах передачи информации световоды должны быть выполнены в виде оптических кабелей. Существует большое количество конструкций кабеля.

ИстоЧники света длЯ волоконно-оптиЧеских систем свЯзи

Для оптической передачи информации в диапазоне длин волн от 0,4 до 30 мкм в качестве источников света применяют светодиоды, лазеры во всем диапазоне длин волн.

Для выбора источника света главный критерий - длина волны, на которой получается минимальное затухание. В качестве источников света применяются

He-Ne-лазер,

CO2 - лазер,

Nd-ИАГ- лазер

для передачи в свободном пространстве;
светодиоды, полупроводниковые инжекционные лазеры для оптических волноводов.

Источники света для оптической связи в свободном пространстве .

He-Ne-лазер, l=0,63 мкм - излучение лежит в видимом оптическом диапазоне, что сильно облегчает юстировку линии передачи;

CO2 - лазер, l=10,6 мкм - пригоден для более протяженных линий передач, поскольку с помощью этих лазеров достигаются более высокие выходные мощности в непрерывном режиме (10-15 Вт).

Недостатками обоих лазеров являются их низкий КПД, а также их большие размеры.

Nd-ИАГ- лазер, l=1,06 мкм, и его вторая гармоника, l=0,53 мкм - этот лазер используется преимущественно для передачи информации между наземными станциями и спутниками.

Источники света для оптической связи по световодам . Эти источники должны удовлетворять следующим условиям:

- длина волны излучения должна лежать в диапазоне минимального затухания;

- излучающая поверхность должна соответствовать примерно диаметру световода для хорошего согласования источника света и световода без фокусирующих элементов.

Эти требования выполняются с помощью полупроводниковых элементов. Поэтому в качестве источников света служат:

- светодиоды

- полупроводниковые инжекционные лазеры, работающие в непрерывном и импульсном режимах

Из-за малого затухания в световоде на длине волны l-1,3 мкм и l=1,55 мкм разработаны специально для этих длин волн лазеры на двойной гетероструктуре InGaAsP/InP, причем достигается выходная мощность 15 мВт.

Для протяженных линий связи в качестве источников света используются лазеры. Они имеют, правда, также некоторые существенные недостатки по сравнению со светодиодами. К ним относятся:

- более сильная зависимость от температуры частоты излучения;

- более низкий срок службы;

- более высокая стоимость.

МодулЯциЯ

Модуляция - это изменение параметров светового луча в зависимости от управляющего (модулирующего) сигнала, несущего информацию, при этом различают две основные формы модуляции: внешнюю и прямую.

При внешней модуляции поляризованный световой луч проходит вне источника света в модулятор, в котором в такте передаваемого сигнала изменяется амплитуда или фаза излучения. Модулятор работает, в общем, на основе электрооптического эффекта (рис. 13).

Рис.13. Принцип действия электрооптического модулятора:

1 - световой луч; 2 - поляризатор; 3 - электрооптический кристалл; 4 - анализатор; 5 - линейно поляризованный, модулированный свет.

Рис. 14. Схема управления полупроводниковым инжекционным лазером:

1 - цифровой сигнал; 2 - кодирование; 3 - возбудитель; 4 - лазер; 5 - штекерное соединение; 6 - световод; 7 - PIN-фотодиод; 8 - ступень регулирования.

При прямой модуляции излучение модулируется непосредственно за счет возбуждения источника света, т.е. источник света сам излучает модулированный свет (рис. 14). Прямая модуляция может быть реализована только в светодиодах и инжекционных лазерах, что достигается путем модуляции тока накачки.

Аналоговая модуляция имеет недостаток в сравнении с другими различными возможностями импульсной модуляции, включая и КИМ.

Отношение сигнал/ шум на приемнике, необходимое для неискаженного обнаружения сигнала, должно быть более высоким по сравнению с импульсно-кодовой модуляцией на 20 дБ.

В оптических системах передачи информации особенно выгодны системы с ИКМ.

Приемники

Обнаружение модулированного излучения при одновременной демодуляции, т.е. воспроизведение передаваемой информации, осуществляется с помощью оптоэлектронных приемников (детекторов).

Применяемые фотодетекторы должны иметь следующие характеристики:

- высокую чувствительность в спектральном диапазоне применяемого источника света;

- высокое временное разрешение;

- малые шумы;

- нечувствительность к температуре;

- простую возможность соединения со световодом;

- большой срок службы;

- низкую стоимость.

Применяются специальные фотодиоды, которые наиболее полно удовлетворяют этим требованиям.

РетранслЯторы

Из-за потерь и дисперсии в световоде возникает ослабление и искажение распространяющегося импульса, так что после определенного расстояния необходима регенерация импульса. Эта регенерация осуществляется в ретрансляторе. Задача этого устройства состоит в том, чтобы осуществить усиление, а также формирование (регенерацию) импульса.

Принцип действия такого устройства состоит в том, что приходящий оптический сигнал в приемнике преобразуется в электрические импульсы, а затем происходит их усиление, а также формирование в электронном усилителе. Регенерированный и усиленный сигнал служит затем в качестве управляющего сигнала в источнике света передатчика, который снова передает сигнал по следующей волоконно-оптической линии.

Регенерация импульсов должна повторяться через определенное расстояние в линии передачи. Допустимое максимальное расстояние между двумя ретрансляторами зависит от параметров системы, в частности от скорости передачи двоичных единиц информации, источника света и применяемого типа световода.

Системы свЯзи

Оптические системы передачи информации в настоящее время используются в тех случаях, когда должно быть использовано преимущество большой ширины полосы канала передачи и могут быть реализованы большие линии связи.

Волоконно-оптические системы передачи информации разделяют на системы передачи ближнего действия, системы передачи дальнего действия, системы передачи среднего действия.

В системах передачи информации ближнего действия длины каналов передачи, предусмотренных преимущественно для промышленного применения, достигают от нескольких метров до нескольких сот метров. Области применения - управление с помощью вычислительной машины, связь с ЭВМ и использование в системах автоматики.

Системы передачи среднего действия имеют длины линий передач до нескольких километров. Типичными областями применения являются передача данных, видеосигнала, например кабельное телевидение.

Система передачи дальнего действия служит для перекрытия больших расстояний.

Рис. 15. Области применения волоконно-оптических линий передач информации:

1 - телефонная передача; 2 - системы связи с импульсно-кодовой модуляцией (телефонная связь); 3 - промышленная передача данных; 4 - промышленные телевизионные установки; 5 - телефония+телевидение с 1 или 2 каналами; 6 - кабельное телевидение с 12-20 программами.

Обзор возможных областей применения волоконно-оптических систем передачи информации представлен на рис. 15.


Список литературы:

1. Справочник по лазерной технике. М: Энергоатомиздат, 1991.

2. Дьяков В. Ф. Тарасов Л. В. Оптическое когерентное излучение. М.: Советское радио, 1974.

3. Оокоси Е. Оптоэлектроника и оптическая связь. М.: Мир, 1988.

4. Федоров Б. Ф. Лазеры. Основы устройства и применения. М.: ДОСААФ СССР, 1988.




29-04-2015, 04:03

Страницы: 1 2
Разделы сайта