Непрерывная ректификация


откуда

y= (1.25)

Зависимость (1.24) является уравнением рабочей ли­нии укреплящей части колонны. В этом уравнении = tg а = А — тангенс угла наклона рабочей линии к оси абсцисс, а =В — отрезок, отсекаемый рабочей линией на оси ординат диаграммы у х (рис. 1.6).

Исчерпывающая часть колонны. Количество орошающей жидкости L' в этом части колонны больше количества флегмы Ф, стекающей по укреп­ляющей части на количество исходной смеси, поступающей на питаю­щую тарелку. Если обозначить количество питания, приходящегося на 1 кмоль дистиллята через f= F/P, то F = Pf и количество жидкости, стекающей по исчерпывающей части колонны, составит:

L = Ф + F = PR + Pf = P (R + I) (1.26)

Количество пара, проходящего через нижнюю часть колонны, равно количеству пара, поднимающегося по верхней (укрепляющей) ее части. Следовательно

G’=G=P(R+1)

Для низа колонны состав удаляющейся жидкости (остатка) х'к = xw и, согласно допущению, состав поступающего сюда из кипятильника пара у’н=yw =xw .Подставив значения L', G', хк и у’н в общее уравнение , получим

(1.27)

После приведения к общему знаменателю и сокращения подобных чле­нов находим:

(1.28)

Зависимость (1.25) представляет собой уравнение рабо­чей линии исчерпывающей части колонны. В этом уравнении = tg a' = А' —тангенс угла наклона рабочей линии к оси ординат, а = В' — отрезок, отсекаемый рабочей линией на оси абсцисс (см. рис.1.6).

Умножив числитель и знаменатель выражений для А' и А (для укре­пляющей части колонны) на количество дистиллята Р, можно заметить, что они представляют собой отношения количеств жидкой и паровой фаз, или удельный расход жидкости, орошающей данную часть колонны.

Построение рабочих линий на диаграмме у х. Для построения рабочих линиоткладывают на оси абсцисс диаграммы (см. рис. 1.6) за­данные составы жидкостей xw, xf и хр. Учитывая принятые допущения о равенстве составов пара и жидкости на концах колонны, из точки х восстанавливают вертикаль до пересечения с диагональю диаграммы в точке а с координатами ур = хр.

Величину R считаем известной. Откладывая на оси ординат отрезок

В= , соединяют прямой конец отрезка (точку d) с точкой а. Из точки, отвечающей заданному составу хf, прово­дят вертикаль до пересечения с линией ad в точке b. Прямая аb — рабо­чая линия укрепляющей части колонны. Согласно допущению yw = xw ,из точки, соответствующей составу xw , восстанавливают вертикаль до пересечения с диагональю диаграммы и получают точку с — конечную точку рабочей линии исчерпывающей части колонны. Соединяют точку с прямой с точкой b, принадлежащей одновременно рабочим линиям укреп­ляющей и исчерпывающей частей колонны. Прямая bc представляет собой рабочую линию исчерпывающей части колонны.



Рис. 1.6 Построение рабочих линий ректификационной колонны на у—x диаграмме.


Рабочие линии ab и bc в отличие от рабочих линий процесса абсорбции располагаются под линией равновесия. В данном случае, как уже отме­чалось, НК переходит в паровую фазу, стремящуюся к равновесию с жидкой фазой, т. е. по существу десорбируется из жидкости.


1.2. Основные технологические схемы для проведения разрабатываемого процесса


Процессы ректификации осуществляются периодически или непре­рывно при различных давлениях: при атмосферном давлении, под ваку­умом (для разделения смесей высококипящих веществ), а также под дав­лением больше атмосферного (для разделения смесей, являющихся газо­образными при нормальных температурах).


1.2.1. Непрерывная ректификация


Рассмотрим, как реализуются указанные выше условия в ректификационных колоннах непрерывного действия (рис. 1.7.), которые наиболее широко применяются в про­мышленности.



Рис.1.7. Схема непрерывно действующей ректификационной установки:

1— ректификационная колонна (а — укрепляющая часть, б — исчерпывающая часть); 2 —кипятильник; 3 — дефлегматор; 4 — делитель флегмы; 5 — подогреватель исходной смеси;6 — холодильник дистиллята (или холодильник-конденсатор); 7 — холодильник остатка (или нижнего продукта); 8, 9 сборники; 10 — насосы.


Ректификационная колонна 1 имеет цилиндрический корпус, внут­ри которого установлены контактные устройства в виде тарелок или насадки. Снизу вверх по колонне движутся пары, поступающие в нижнюю часть аппарата из кипятильника 2, кото­рый находится вне колонны, т. е. является выносным (как показано на рисунке 1.7.), либо размещается непосредственно под колонной. Следо­вательно, с помощью кипятильника создается восходящий по­ток пара. Пары проходят через слой жидкости на нижней тарелке, которую будем считать первой, ведя нумерацию тарелок условно снизу вверх.

Пусть концентрация жидкости на первой тарелке равна х1 (по низ­кокипящему компоненту), а ее температура t1. В результате взаимодействия между жидкостью и паром, имеющим более высокую темпера­туру, жидкость частично испаряется, причем в пар переходит преимуще­ственно НК. Поэтому на следующую (вторую) тарелку поступает пар с содержанием НК у1> х1.

Испарение жидкости на тарелке происходит за счет тепла конденса­ции пара. Из пара конденсируется и переходит в жидкость преимуществен­но ВК, содержание которого в поступающем на тарелку паре выше рав­новесного с составом жидкости на тарелке. При равенстве теплот испаре­ния компонентов бинарной смеси для испарения 1 моль НК необходимо сконденсировать 1 моль ВК, т. е. фазы на тарелке обмениваются экви­молекулярными количествами компонентов.

На второй тарелке жидкость имеет состав x2, содержит больше НК, чем на первой (х2 > x1), и соответственно кипит при более низкой темпе­ратуре (t2 1). Соприкасаясь с ней, пар состава у1 частично конденси­руется, обогащается НК и удаляется на вышерасположенную тарелку, имея состав y2 > x2, и т. д.

Таким образом пар, представляющий собой на выходе из кипятильника почти чистый ВК, по мере движения вверх все более обогащается низко­кипящим компонентом и покидает верхнюю тарелку колонны в виде почти чистого НК, который практически полностью переходит в паровую фазу на пути пара от кипятильника до верха колонны.

Пары конденсируются в дефлегматоре 3, охлаждаемом водой, и полу­чаемая жидкость разделяется в делителе 4 на дистиллят и флегму, которая направляется на верхнюю тарелку колонны. Следовательно, с помощью - дефлегматора в колонне создается нисходящий поток жид­кости.

Жидкость, поступающая на орошение колонны (флегма), представляет собой почти чистый НК. Однако, стекая по колонне и взаимодействуя с паром, жидкость все более обогащается ВК, конденсирующимся из пара. Когда жидкость достигает нижней тарелки, она становится практически чистым ВК и поступает в кипятильник, обогреваемый глухим паром, или другим теплоносителем.

На некотором расстоянии от верха колонны к жидкости из дефлегма­тора присоединяется исходная смесь, которая поступает на так называе­мую питающую тарелку колонны. Для того чтобы уменьшить тепловую нагрузку кипятильника, исходную смесь обычно предваритель­но нагревают в подогревателе 5 до температуры кипения жидкости на питающей тарелке.

Питающая тарелка как бы делит колонну на две части, имеющие раз­личное назначение. В верхней части 1а (от питающей до верхней тарелки) должно быть обеспечено возможно большее укрепление паров, т. е. обо­гащение их НК с тем, чтобы в дефлегматор направлялись пары, близкие по составу к чистому НК. Поэтому данная часть колонны называется укрепляющей. В нижней части 1б (от питающей до нижней та­релки) необходимо в максимальной степени удалить из жидкости НК, т. е. исчерпать жидкость для того, чтобы в кипятильник стекала жидкость, близкая по составу к чистому ВК. Соответственно эта часть колонны называется исчерпывающей.

В дефлегматоре 3 могут быть сконденсированы либо все пары, посту­пающие из колонны, либо только часть их соответствующая количеству возвращаемой в колонну флегмы. В первом случае часть конденсата, остающаяся после отделения флегмы, представляет собой дистиллят (ректификат), или верхний продукт, который после охлаждения в холо­дильнике 6 направляется в сборник дистиллята 9. Во втором случае не­сконденсированные в дефлегматоре пары одновременно конденсируются и охлаждаются в холодильнике 6, который при таком варианте работы служит конденсатором-холодильником дистиллята.

Жидкость, выходящая из низа колонны (близкая по составу ВК) также делится на две части. Одна часть, как указывалось, направляется в кипя­тильник, а другая — остаток (нижний продукт) после охлаждения водой в холодильнике 7 направляется в сборник 8.

На рис. (1.7.) приведена лишь принципиальная схема непрерывно-действующей ректификационной установки. Такие установки оснащаются необходимыми контрольно-измерительными и регулирующими прибора­ми, позволяющими автоматизировать их работу и проводить процесс с помощью программного управления в оптимальных условиях.


1.2.2. Периодическая ректификация


Периодически действующие ректификационные установки приме­няют, как правило, для разделения жидких смесей в тех случаях, когда использование непрерывнодействующих установок нецеле­сообразно. Обычно это характерно для технологических процессов, в которых количества подлежащих разделению смесей невелики и требуется определенное время для накопления этих продуктов перед разделением или в условиях часто меняющегося состава исходной смеси. Последний случай специфичен для гибких тех­нологических процессов, в которых спектр получаемых продуктов весьма разнообразен.


Периодическую ректификацию проводят на установках с прак­тически идентичной принципиальной схемой. Один из возможных вариантов такой установки показан на рис. (1.8.).


Рис. 1.8. Схема установки для проведения периодической ректификации:

1-куб-кипятильник; 2-подогреватель; 3-ректификационная колонна; 4-дефлегматор; 5-дели­тель потока; 6-холодильник; 7-сборники.


Исходную смесь периодически загружают в куб-кипятильник 1, снабженный подогревателем 2, в который подается теплоноситель, например насыщенный водяной пар. Исходную смесь доводят до кипения. Образующиеся пары подни­маются по колонне 3, в которой происходит противоточное взаимодействие этих паров с жидкостью (флегмой), поступающей из дефлегматора 4. Часть конденсата после делителя потока возвращается в колонну в виде флегмы, другая часть - дис­тиллят Р - через холодильник 6 собирается в сборниках 7 в виде отдельных фракций. Процесс ректификации заканчивают обычно после того, как будет достигнут за­данный средний состав дистиллята. Таким образом, колонна 3 является аналогом укрепляющей части колонны непрерывного действия, а куб выполняет роль исчер­пывающей части.

Периодическая ректификация может осуществляться двумя способами: 1) при постоянном составе дистиллята (хр = const) и 2) при постоянном флегмовом числе (RP = const).

В первом случае количество флегмы по мере уменьшения содер­жания легколетучего компонента в кубе должно постепенно воз­растать. В промышленных условиях установки для проведения такого процесса необходимо оснащать управляющими автомати­зированными системами, способными осуществлять непрерывное и строго программированное изменение питания колонны флегмой и подачи теплоносителя в испаритель (куб колонны). Изменение основных расходных параметров можно проводить, например, по данным о качественном составе легколетучего компонента либо в кубовой жидкости, либо в дистилляте.


1.2.3. Экстрактивная и азеотропная ректификация


Уровень трудности разделения смесей с близкими температурами кипения может быть оценен с помощью коэффициента относительной летучести = РА/РВ. Если значение невелико, то такую смесь можно разделять под вакуумом. Вместе с тем часто экономически целесообразнее в этом случае оказывается использование метода, основанного на введении в разделяемую смесь дополнительного-разделяющего-компонента избирательного действия.

В разделяющем компоненте, который является высококипящим по отношению к одному из двух компонентов исходной смеси, этот последний хорошо растворим, а второй компонент либо нерастворим, либо труднорастворим. Присутствие третьего - разделяющего, или экстрагирующего, - компонента приводит к снижению сил притяжения нерастворимого компонента в растворе к остальным частицам и в результате этого - к увеличению его относительной летучести в системе (рис. 1.9.).

Таким образом, разделяющий агент обладает избирательным действием - повышает давление пара НК в большей степени, чем давление пара ВК. Резкое увеличение облегчает разделение исходных компонентов, но влечет за собой последующий процесс разделения смеси хорошо растворимого и экстрагирующего компонентов, которые удаляются с остатком. Описанный метод разделения называют экстрактивной ректификацией.




Рис. 1.9. Положение кривой равновесия без добавки (1) и с добавкой (2) разделяющего агента


В отличие от экстрактивной, азеотропная ректификация за­ключается в осуществлении процесса в присутствии разделяющего компонента, образующего с компонентами разделяемой смеси один или несколько азеотропов, которые в основном отбираются в виде дистиллята. Схема установки для проведения экстрактивной рек­тификации представлена на рис. (1.10.).

Исходную смесь, состоящую из компонентов А и В, подают на та­релку питания колонны 7 для экст­рактивной ректификации. Несколь­ко выше тарелки питания вводят разделяющий агент С. Низкокипя­щий компонент отбирают в виде дистиллята, а смесь высококипяще­го компонента В и разделяющего компонента С из нижней части колонны 1 направляют на разделе­ние в колонну 2. Разделяющий компонент, отбираемый в виде кубового остатка, возвращают на орошение колонны 1.



Рис. 1.10. Схема установки для экстрактивной ректификации бинарной смеси

1-колонна для экстрактивной ректификации; 2-колонна для разделения продукта В и экстра­гирующего компонента С; 3-насосы; 4-кипятильники; 5-конденсаторы


При азеотропной ректификации (рис. 1.11.) исходную азеотропную смесь подают на тарелку питания колонны, которая орошается сверху разделяющим агентом С. Расход разделяющего агента в основном зависит от состава исходной смеси. Так, при азеотроп­ной ректификации расход разделяющего компонента увеличивается с повышением в исходной смеси концентрации тех компонентов, которые отбираются в дистиллят. При экстрактивной ректифи­кации, наоборот, расход разделяющего компонента возрастает при увеличении в исходной смеси концентрации компонентов, отби­раемых в виде кубового остатка.


Рис. 1.11. Схема установки для азеотропной ректификации:

1-колонна; 2-конденсатор; 3-отстойник; 4-кипятильник


Наиболее сложной задачей при использовании методов экстрак­тивной и азеотропной ректификации является выбор разделяющего компонента, который должен удовлетворять следующим требова­ниям: 1) обеспечивать возможно большее повышение коэффициента относительной летучести разделяемых компонентов; 2) достаточно легко регенерировать; 3) хорошо растворять разделяемые компо­ненты для предотвращения расслаивания жидкой фазы при темпе­ темпе­ратурных условиях в колонне; 4) быть безопасным в обращении, доступным, дешевым, термически стабильным. Обычно при выборе разделяющего агента основываются на справочных данных.

Если в качестве разделяющего агента используют растворимые твердые вещества, то такой процесс разделения называют солевой ректификацией.


1.3. Типовое оборудование для проектируемой установки


Для проведения процессов ректификации применяются аппараты раз­нообразных конструкций, основные типы которых не отличаются от со­ответствующих типов абсорберов.

В ректификационных установках используют главным образом аппара­ты двух типов: насадочные и тарельчатые ректификацион­ные колонны. Кроме того, для ректификации под вакуумом применяют пленочные и роторные колонны различных конструкций.

Насадочные, барботажные, а также некоторые пленочные колонны по конструкции внутренних устройств (тарелок, насадочных тел и т. д.) аналогичны абсорбционным колоннам. Одна­ко в отличие от абсорберов ректификационные колонны снабжены теплообменными устройствами — кипятильником (кубом) и дефлегматором. Кроме того, для уменьшения потерь тепла в окружающую среду ректи­фикационные аппараты покрывают тепловой изоляцией.

Кипятильник или куб, предназначен для превращения в пар части жидкости, стекающей из колонны, и подвода пара в ее нижнюю часть (под насадку или нижнюю тарелку). Кипятильники имеют поверх­ность нагрева в виде змеевика или представляют собой кожухотрубчатый теплообменник, встроенный в нижнюю часть ко­лонны (рис. 1.12., а). Более удобны для ремонта и замены выносные кипятильники (см. рис. 1.7.), которые устанавливают ниже колонны с тем, чтобы обеспечить естественную циркуляцию жидкости.

В периодически действующих колоннах куб является не только испа­рителем, но и емкостью для исходной смеси. Поэтому объем куба должен быть в 1,3—1,6 раза больше его единовременной загрузки (на одну опера­цию). Обогрев кипятильников наиболее часто производится водяным насы­щенным паром.

Дефлегматор, предназначенный для конденсации паров и по­дачи орошения (флегмы) в колонну, представляет собой кожухотрубчатый теплообменник, в межтрубном пространстве которого обычно конденси­руются пары, а в трубах движется охлаждающий агент (вода). Однако вопрос о направлении конденсирующихся паров и охлаждающего агента внутрь или снаружи труб следует решать в каждом конкретном случае, учитывая желательность повышения коэффициента теплопередачи и удобство очистки поверхности теплообмена.

В случае частичной конденсации паров в дефлегматоре его рас­полагают непосредственно над колонной (рис. 1.12., а), чтобы обеспе­чить большую компактность установки, либо вне колонны (см. рис. 1.7.). При этом конденсат (флегму) из нижней части дефлегматора подают непосредственно через гидравлический затвор наверх колонны, так как в данном случае отпадает необходимость в делителе флегмы.

В случае полной конденсации паров в дефлегматоре его устанавли­вают выше колонны (см. рис. 1.7.), непосредственно на колонне (см. рис. 1.12., а) или ниже верха колонны (рис. 1.12., б) для того, чтобы уменьшить общую высоту установки. В последнем случае флегму из де­флегматора 1 подают в колонну 2 насосом. Такое размещение дефлег­матора часто применяют при установке ректификационных колонн вне зданий, что более экономично в ус­ловиях умеренного климата.



Рис. 1.12. Варианты установки дефлегматоров:

а — на колонне; б — ниже верха ко­лонны; 1 — дефлегматоры; 2 — колон­ны; 3 — насос.


Б а р б о т а ж н ы е колонны в процессах ректификации наиболее широко распространены. Они применимы для больших производительностей, широкого диапа­зона изменений нагрузок по пару и жидкости и могут обеспечить весь­ма четкое разделение смесей. Недо­статок барботажных аппаратов—от­носительно высокое гидравлическое сопротивление—в условиях ректи­фикации не имеет такого существенного значения, как в процессах аб­сорбции, где величина р связана со значительными затратами энергии на перемещение газа через аппарат. При ректификации повышение гидрав­лического сопротивления приводит лишь к некоторому увеличению дав­ления и соответственно к повышению температуры кипения жидкости в кипятильнике колонны. Однако тот же недостаток (значительное гид­равлическое сопротивление) сохраняет свое значение для процессов ректификации под вакуумом.

В н а с а д о ч н ы х колоннах (рис. 1.13.) используются насадки различ­ных типов, но в промышленности наиболее распространены колонны с насадкой из колец Рашига. Меньшее гидравлическое сопротив­ление насадочных колонн по сравнению с барботажными особенно важно при ректификации под вакуумом. Даже при значительном вакууме в верхней части колонны вследствие большого гидравлического сопротивле­ния ее разрежение в кипятильнике может оказаться недостаточным для требуемого снижения температуры кипения исходной смеси.

Для уменьшения гидравлического сопротивления вакуумных колонн в них применяют насадки с возможно большим свободным объемом.

В самой ректификационной колонне не требуется отводить тепло, как в абсорберах. Поэтому трудность отвода тепла из насадочных колонн является скорее достоинством, чем недостатком насадочных колонн в условиях процесса ректификации.

Однако и при ректификации следует считаться с тем, что равномерное распределение жидкости по насадке в колоннах большого диаметра за­труднено. В связи с этим диаметр промышленных насадочных ректифика­ционных колонн обычно не превышает 0,8—1 м.



Рис. 1.13. Насадочная ректификационная колонна с кипятильником

1-корпус; 2-насадка; 3-опорная решетка; 4-перераспределитель флегмы; 5-патрубок для слива кубового остатка; 6-кипятильник; 7-ороситель.


Как уже отмечалось, в насадочных колоннах поверхностью контакта фаз является смоченная поверхность н а с а д ­к и. Поэтому насадка должна иметь возможно большую поверх­ность в единице объема. Вместе с тем для того, чтобы насадка работала эффективно, она должна удовлетворять следующим тре­бованиям: 1) хорошо смачиваться орошающей жидкостью, т.е. материал насадки по отношению к орошающей жидкости должен быть лиофильным; 2) оказывать малое гидравлическое сопротивле­ние газовому потоку, т.е. иметь возможно большее значение сво­бодного объема или сечения насадки; 3) создавать возможность для высоких нагрузок аппарата по жидкости и газу; для этого насадка должна также иметь большие значения или SCB; 4) иметь малую плотность; 5) равномерно распределять орошающую жидкость; 6) быть стойкой к агрессивным средам; 7) обладать высокой механи­ческой прочностью; 8) иметь невысокую стоимость.

Очевидно, что насадок, которые бы полностью удовлетворяли всем указанным требованиям, не существует, так как соответствие одним требованиям нарушает соответствие другим (например, уве­личение удельной поверхности а насадки влечет за собой повышение гидравлического сопротивления, а также снижение предельно допус­тимых скоростей газа и т.д.).

Поэтому в промышленности используют большое число разно­образных по форме и размерам насадок, изготовленных из различ­ных материалов (металла, керамики, пластических масс и др.), которые удовлетворяют основным требованиям при проведении того или иного процесса ректификации.

В качестве насадки наиболее широко применяют тонкостенные кольца Рашига (Приложение 1, а), имеющие высоту, равную диаметру, который изменяется в пределах 15-150 мм. Кольца малых разме­ров засыпают в колонну навалом. Большие кольца (от 50х50 мм и выше) укладывают правильными рядами, сдвинутыми друг отно­сительно друга. Такой способ заполнения аппарата насадкой назы­вают загрузкой в укладку, а загруженную таким способом насадку - регулярной. Регулярная насадка имеет ряд преимуществ перед не­регулярной, навалом засыпанной в колонну: обладает меньшим гидравлическим сопротивлением, допускает большие скорости газа. Однако регулярная насадка требует более сложных по устройству оросителей, чем насадка, засыпанная навалом.

Хордовую насадку (см. Приложение 1, б) обычно применяют в колоннах большого диаметра. Несмотря на простоту ее изготовления, хордовая насадка вследствие небольших удельной поверхности и свободного сечения вытесняется более сложными и дорогостоя­щими видами фасонных насадок, часть из которых представлена в Приложение 1, б. В табл. 1.1. приведены основные характеристики наса­док некоторых типов.


Таблица 1.1. Характеристики насадок




Удельная

Свобод-

Эквивалент-


Масса

Насадка

Размеры элемен-

поверхность,

ный

ный диаметр,

1 м3 на -


та, мм

М23

объем,

м

садки, кг




М33



. Регулярная насадка

Деревянная хордовая

10

100

0,55

0,022

210

(шаг в свету

20

65

0,68

0,042

145

10 х 100 мм)






Керамические кольца

50 х 50 х 50

НО

0,735

0,027

650

Рашига

80 х 80 х 8

80

0,720

0,036

670

100 х 100 х 100

60

0,720

0,048

670

Засыпка в навал

Керамические кольца

15 х 15 х 2

330

0,700

0,009

690

Рашига

25 х 25 х 3

200

0,740

0,015

530


50 х 50 х 5

90

0,785

0,035

530

Стальные кольца

10 х 10 х 0,5

500

0,880

0,007

960

Рашига

15 х 15 х 0,5

350

0,920

0,009

660

25 х 25 х 0,8

220

0,920

0,017

640

Керамические кольца

25 х 25 х 3

220

0,740

0,014

610

Палля

50 х 50 х 5

120

0,780

0,026

520

Стальные кольца

25 х 25 х 0,6

235

0,900

0,01

525

Палля

50 х 50 х 1

108

0,900

0,033

415

Керамические седла

12,5

460

0,680

0,006

720

Берля

25

260

0,690

0,011

670


38

165

0,700

0,017

670

При выборе размеров насадки необходимо учитывать, что с уве­личением размеров ее элементов увеличивается допустимая ско­рость газа, а гидравлическое сопротивление насадочной колонны снижается. Общая стоимость колонны с крупной насадкой будет ниже за счет снижения диаметра колонны, несмотря на то, что высота насадки несколько увеличится по сравнению с таковой в колонне, заполненном насадкой меньших размеров.

Если необходимо провести глубокое разделение газовой смеси, требующее большого числа единиц переноса, то в этом случае рациональнее использовать мелкую насадку.

При выборе размера насадки необходимо соблюдать условие, при котором отношение диаметра D колонны к эквивалентному диаметру dЭ насадки

D/dЭ 10.


Пленочные аппараты. Эти аппараты применяются для ректификации под вакуумом смесей, обладающих малой термической стойкостью при нагревании (например, различные мономеры и полимеры, а также другие продукты органического синтеза).

В ректификационных аппаратах пленочного типа достигается низкое гидравлическое сопротивление. Кроме того, задержка жидкости в еди­нице объема работающего аппарата мала.

К числу пленочных ректификационных ап­паратов относятся колонны с регулярной на­садкой в виде пакетов вертикальных трубок диаметром 6—20 мм (многотрубчатые колон­ны), а также пакетов плоскопараллельной или сотовой насадки с каналами различной формы, изготовленной из перфорированных металли­ческих листов или металлической сетки. Одна из распространенных конструкций роторно-пленочных колонн показана на рис. 1.14. Она состоит из колонны, или ректифи­катора 1, снабженного наружным обогревом через паровые рубашки 2 и ротором 3, ротор­ного испарителя 4 и конденсатора 5. Ротор, представляющий собой полую трубу с лопастя­ми, охлаждаемую изнутри водой, вращается внутри корпуса колонны. Исходная

Рис.1.14. Схема роторно-пленочной ректификационной колонны.


1-колонна; 2-рубашка для обогрева; 3-ротор; 4-роторный испаритель; 5-конденсатор-дефлегматор; 6-штущер для ввода исходной смеси; 7- штуцер для ввода флегмы; 8-штуцер для ввода пара; 9-штуцер для вывода остатка.


смесь по­дается в колонну через штуцер 6. Сверху ко­лонна орошается флегмой, поступающей из конденсатора 5 через штуцер 7. Пар подается в колонну через штуцер 8 из испарителя 4, снаб­женного неохлаждаемым ротором и аналогич­ного пленочному выпарному аппарату. Под­нимаясь в пространстве между ротором 3 и корпусом колонны 1, пар конденсируется на наружной поверхности ротора. Образующаяся пленка конденсата отбрасывается под дейст­вием центробежной силы по поверхности ло­пастей ротора к периферии. Попадая на обо­греваемую внутреннюю поверхность, жидкость испаряется и образующийся пар поднимается кверху. Таким конденсационно-испарительным способом (при работе вне адиабатических условиях) достигается четкое разделение смеси при малом времени ее пребывания в ап­парате и незначительном перепаде давле­ний по высоте колонны, так как большая часть внутреннего пространства корпуса заполнена потоком пара. Ро­торные испарители типа испарителя 4 могут быть использованы в каче­стве самостоятельных аппаратов для вакуумной дистилляции смесей, чувствительных к высоким температурам.

Недостатки роторных колонн: ограниченность их высоты и диаметра (из-за сложности изготовления и требований, предъявляемых к проч­ности и жесткости ротора), а также высокие эксплуатационные расходы.

В случае загрязненных сред целесообразно применять регуляр­ные насадки, в том числе при работе под повышенным давлением. Для этих сред можно использовать также так называемые колонны с плавающей насадкой. В качестве насадки в таких колоннах обычно применяют легкие полые шары из пластмассы, которые при достаточно высоких скоростях газа переходят во взвешенное состояние. Вследствие их интенсивного взаимодействия такая насадка практически не загрязняется.

В колоннах с плавающей насадкой возможно создание более высоких скоростей, чем в колоннах с неподвижной насадкой. При этом увеличение скорости газа приводит к расширению слоя шаров, что способствует снижению скорости газа в слое насадки. Поэтому существенное увеличение скорости газового потока в таких аппара­тах (до 3-5 м/с) не приводит к значительному возрастанию их гидравлического сопротивления.



ПРИЛОЖЕНИЕ 1


Виды насадок



2 3

a.






1 2 3 6 7








29-04-2015, 04:06


Страницы: 1 2 3
Разделы сайта