Очистка газообразных выбросов от аэрозолей

Пыль, образующаяся при выплавке 45%-ного ферросилиция в закрытых электропечах

Пыль, образующаяся в содорегенерационных котлоагрегатах сульфатно-целлюлозного производства

Пыль от производства черного щелока при обработке предварительно увлажненных газов

То же, при обработке сухих газов

Частицы поташа из МГД-установок открытого цикла

Пыль, образующаяся при выплавке силикомарганца в закрытых ферросплавных печах

Пыль каолинового производства

Улавливание сажи, образующейся при электрокрекинге метана

Возгоны свинца и цинка из шахтных печей

Пыль дымовых газов карбидной печи

Пыль закрытой печи, выплавляющей углеродистый феррохром

Зола дымовых газов ТЭЦ

9,88·10 -2

0,206

1,34·10 -2

1,355·10 -2

1,915·10 -2

6,61·10 -3

6,5·10 -4

2,34·10 -2

5,53·10 -5

2,14·10-4

1,09·10-5

1,565·10-6

1,74·10-6

0,1925

0,268

2,42·10-5

4·10-4

1,32·10-3

9,3·10-4

0,016

6,9·10-3

2,34·10-4

10-5

6,06·10-3

0,823·10-3

6,49·10-5

0,17

0,4663

0,3506

0,6312

0,6210

0,5688

0,891

1,0529

0,5317

1,2295

1,0679

1,4146

1,619

1,594

0,3255

0,2589

1,26

1,05

0,861

0,861

0,554

0,67

1,115

1,36

0,4775

0,914

1,1

0,3

Эти константы определяют только экспериментальным путем. Их значения для некоторых пылей и туманов приведены в табл. 1.

Величина h незначительно характеризует качество очистки в интервале высоких степеней очистки (0,98 – 0,99), поэтому в этом случае используют понятие числа единиц переноса:


Из уравнений (2) и (3) величину единиц переноса можно выразить формулой

В логарифмических координатах формула (4) представляет собой прямую линию, тангенсом угла наклона которой к оси абсцисс является c , а величину B находят при пересечении прямой с линией, соответствующей значению KТ =1,0

Зная NЧ , удельную энергию KТ можно определить при помощи графиков, изображенных на рис. 1 (номера линий соответствуют определенной пыли по табл. 1).

Величина KТ учитывает способ ввода жидкости в аппарат, диаметр капель, вязкость, поверхностное натяжение и другие свойства жидкости.

Технологический расчет мокрых центробежных циклонов и скрубберов

Расчет мокрых центробежных аппаратов заключается в определении их основных размеров, расхода воды, гидравлического сопротивления и эффективности по очистке газа. Диаметр цилиндрической части циклонов и скрубберов рассчитывают по формуле


где V – количество газа, подлежащего очистке при рабочих условиях, м^3/c;

υ – средняя скорость газа в сечении цилиндрической части аппарата, м/с.

Расход воды, необходимой для орошения стенок аппаратов, определяется в зависимости от их диаметра по формуле

Gв=0,14?D, л/с (2)

При таком расходе воды толщина пленки будет не менее 0,3 мм, что исключит разрывы на пути ее движения по стенкам.

Гидравлическое сопротивление циклонов и скрубберов находят по формуле

где р – плотность газа в рабочих условиях, Нсм ,

υ - скорость газа во входном патрубке, м/с;

ξ – коэффициент местного сопротивления аппарата.

Значение коэффициента местного сопротивления циклонов зависит от диаметра:

Диаметр циклона , м . 0,6 0,8 1,0 1,2 1,4 1,6

ξ 3,4 3,0 2,9 2,8 2,7 2,6

Значение скрубберов типа МП – ВТИ ?=9, а для типа ЧС – ВТИ ?=2,6ч2,8.

Если в формуле (3) принять скорость газа в цилиндрической части корпуса аппарата, то значение коэффициента гидравлического сопротивления следует принимать для циклонов ?=30ч32 ? для скрубберов ?=33,5ч35,2.

Чтобы определить степень очистки газа или воздуха в циклонах и скрубберах, необходимо знать их фракционную эффективность. Для мокрых центробежных циклонов и скрубберов диаметром 1 м, по данным ВТИ, фракционная эффективность в зависимости от скорости витания частиц пыли приведена в табл. 2.

Таблица 2

Фракционная эффективность очистки газа от пыли в мокрых циклонах и скрубберах диаметром 1м, %

Скорость газа во входной патрубке,м/с

Фракционная эффективность при скорости витания частиц, см/с

0 - 0,5

0,5 - 2

2 - 5

5 - 10

10-15

15-20

>20

15

17

19

21

23

65,5

75,7

81,5

85

87,4

80

85,2

88,2

90,3

91,6

88

90

91,5

92,8

93,7

91

92

93,2

94,3

95,3

92,7

93,7

94,5

95,5

96,4

94

95

95,8

96,7

97,6

98

98,5

99

99,5

100

Скорость витания частиц в зависимости от их размера и плотности находят по номограмме. По этим данным общую степень очистки газа определяют по формуле (4).

Для циклонов другого диаметра D м степень очистки газа может быть уточнена по формуле

В некоторых случаях требуется знать конечную температуру газа на выходе из циклона или скруббера. Ее можно определить по эмпирической формуле

где tВЫХ - температура газа на выходе из аппарата, С;

tВХ - температура газа перед аппаратом, С;

tН - температура воды, поступающей на орошение, С;

tК -температура волы на выходе из аппарата, принимаемая на 5 – 10 С меньше температуры мокрого термометра газа, С;

с - теплоемкость газа, Дж/(кг· С);

- плотность газа перед аппаратом, кг/м?.

Расчет полого скруббера

Количество тепла, которое необходимо отнять от газа в процессе его охлаждения и передать жидкости (воде), рассчитывают по формуле

Q=V0 (c+f1 cП )(t1 -t2 ); Дж/с (1)

где V0 - количество сухого газа при нормальных условиях, м?(н)/с;

с – объемная теплоемкость сухого газа при нормальных условиях, Дж/(м?(н)·°C);

сП - теплоемкость водяного пара, Дж/(кг·°C);

f1 - начальное влагосодержание газа, кг/м?(н);

t1 , t2 - соответственно начальная и конечная температуры газа на выходе в скруббер и на выходе из него, °C.

Пренебрегая теплопотерями в окружающую среду, полезный рабочий объем скруббера рассчитывают по формуле

где k – объемный коэффициент теплопередачи в скруббере, Вт/(м?·°С);

?t – средняя разность температур газа и жидкости, °C.

Зависимость объемного коэффициента теплопередачи от плотности орошения и массовой скорости в скрубберах была получена Г.Ф. Алексеевым и В.А. Оленевым опытным путем при исследованиях охлаждения и очистки доменного газа водой:

ккал/(м3 *ч*0 С), (3)

где U – плотность орошения, кг/(м?·ч);

ρГ – плотность газа, кг/м?;

υГ – скорость газа, м/с.

Таблица 3

Коэффициент теплопередачи и испарения в полых скрубберах (практические данные)

Для некоторых газов объемный коэффициент теплопередачи в скрубберах приведен в табл. 3. Коэффициент теплопередачи зависит от режимных параметров жидкости и газа в скруббере.

Его значение увеличивается с ростом относительной скорости газа и капель, а также с уменьшением размера капель и снижается с ростом величины удельного орошения.

Среднюю разность температур газа и воды в скруббере (газ и вода движутся противотоком) определяют из выражения

где t1 , t2 – начальная и конечная температура газа, °C;

tН , tК – начальная и конечная температура воды, °C.

Список используемой литературы:

Алиев Г.М. Устройство и обслуживание газоочистительных и пылеулавливающих установок - М.: Металлургия, 1983

Гордон Г.М., Пейсахов И.Л. Пылеулавливание и очистка газов – М.: Металлургия, 1968

Денисов С.И. Улавливание и утилизация пылей и газов – М.: Металлургия, 1991

Дубальская Э.Н. Очистка отходящих газов – М.,1991

Коузов П.А., Малыгин А.Д., Скрябин Г.М. Очистка от пыли газов и воздуха в химической промышленности – Л.: Химия, - Ленинградское отделение. 1982

Ю.В. Красовицкий, А.В. Малинов, В.В. Дуров Обеспыливание промышленных газов в фаянсовом производстве – М.: Химия, 1994

Лаптев А.А., Приемов С.И., Родичкин И.Д., Шемшученко Ю.С. Охрана и оптимизация окружающей среды – Киев.: Либедь, 1990

Охрана окружающей среды :Справочное пособие / Сост. Л.П. Шариков. – Л.: Судостроение, 1978

Пирумов А.И. Обеспыливание воздуха – М.: Стройиздат, 1974

Пирумов А.И. Обеспыливание воздуха – 2-е изд., испр. и доп. – М.:Стройиздат,1981

Родионов А.И., Клушин В.Н., Торочешников Н.С. Техника защиты окружающей среды – М.: Химия, 1989

Справочник по пыле- и золоулавливанию – М.: Энергия, 1975

Старк С.Б. Газоочистительные аппараты и установки в металлургическом производстве – М.: Металлургия,1990

Страус В. Промышленная очистка газов – М.: Химия, 1981

Штокман Е.А. Очистка воздуха – М.: Изд. АСВ, 1999




29-04-2015, 04:07

Страницы: 1 2 3 4 5 6
Разделы сайта