ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
РОССИЙСКОЙ ФЕДЕРАЦИИ
ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра «Авиа- и ракетостроение»
Специальность 160801- «Ракетостроение»
КУРСОВОЙ ПРОЕКТ
по дисциплине «ПГС и автоматика ЛА»
ПРОЕКТИРОВАНИЕ ПГС
ПЕРВОЙ СТУПЕНИ БАЛЛИСТИЧЕСКОЙ РАКЕТЫ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
КП-2068998.00.00.00.00.000 ПЗ
Омск 2006
Омский государственный технический университет
Кафедра «Авиа- и ракетостроение»
Специальность 160801 – «Ракетостроение»
Задание №
на курсовое проектирование
по дисциплине «ПГС и автоматика ЛА»
Студент _______________
1. Тема проекта: Проектирование ПГС первой ступени баллистической ракеты.
2. Исходные данные к проекту:
Дальность полета | 9500 км |
Тяга ступени | 1103 кН |
Время работы ДУ | 91 с |
Диаметр ракеты | 2,25 м |
Топливо | Кислород+ Керосин |
3. Содержание проекта:
3.1 Разделы пояснительной записки:
- проектировочный расчёт;
- гидравлический расчёт;
- массовый расчёт;
- оценочные расчёты.
3.2 Перечень графического материала:
а) Принципиальная схема ПГС – 1 лист формата А1;
б) Схема размещения ПГС на верхнем днище бака– 1 лист формата А1;
в) Элемент автоматики ЛА – 1 лист формата А3.
4. Дата выдачи задания: 6 сентября 2006 г.
Аннотация
В ходе курсового проектирования была произведено проектирование и расчёт ПГС двухступенчатой баллистической ракеты.
Выполненный курсовой проект включает в себя пояснительную записку объёмом 56 страниц формата A4, содержит 15 рисунков и 2 таблицы. Список использованных источников состоит из 7 публикаций.
Графическая часть курсового проекта включает в себя:
а) Принципиальную схему ПГС – 1 лист формата А1;
б) Сборочный чертёж верхнего днище бака окислителя – 1 лист формата А1;
в) Сборочный чертёж элемента автоматики ЛА – 1 лист формата А3.
Содержание
Введение
1. Анализ схемных решений и выбор базового варианта подачи компонентов топлива
2. Оценочный расчёт проектных параметров ЖРД
3. Расчёт топливного отсека
3.1 Объёмный расчёт баков окислителя и горючего
3.2 Оценочный расчёт массы топливного отсека
4. Составление компоновочной схемы ступени
5. Выбор и обоснование схемы системы наддува
5.1 Оценочный расчёт массы и габаритов “холодной” системы наддува
5.2 Оценочный расчёт массы и габаритов “горячей” системы наддува
6. Описание схемы ПГС и её работа на всех этапах функционирования:
6.1 Описание схемы ПГС
6.2 Описание работы ПГС
6.2.1 Подготовка ракеты к запуску
6.2.2 Запуск двигателя
6.2.3 Работа ПГС в полёте
6.2.4 Выключение ДУ
6.2.5 Аварийный режим работы ПГС
7. Выбор диаметров трубопроводов окислителя и горючего
8. Выбор типов заборных устройств и расчёт остатков незабора
8.1 Выбор типов и основных геометрических размеров заборных устройств
8.2 Расчёт полных остатков незабора
9. Расчёт гидравлических потерь в магистралях трубопроводов
9.1 Расчёт гидравлических потерь в магистралях горючего
9.2 Расчёт гидравлических потерь в магистралях окислителя
10. Уточнённый расчёт топливного отсека
11. Расчёт элемента автоматики
12. Расчёт времени заправки
13. Воздействие компонентов топлива на экологию
Заключение
Список использованных источников
Приложения
Спецификация к сборочному чертежу верхнего днища бака окислителя
Спецификация к сборочному чертежу элемента автоматики
Введение
Важнейшим элементом летательных аппаратов, оснащённых жидкостными ракетными двигательными установками (ЖРДУ) является пневмогидравлическая система (ПГС), которая обеспечивает заправку ЛА основными компонентами топлива; хранение запаса компонентов топлива и рабочих тел ПГС и автоматики ЛА на борту без изменения химических и физических свойств в заданном диапазоне параметров; предстартовый и основной наддув топливных баков; подачу компонентов топлива в КС с заданными параметрами на протяжении всего времени работы ДУ.
Целью данного курсового проекта является проектирование ПГС первой ступени двухступенчатой баллистической ракеты.
1. Анализ схемных решений и выбор базового варианта подачи компонентов топлива
В зависимости от назначения к ЖРД предъявляют различные требования по величине тяги, продолжительности и условиям работы. Это приводит к большому разнообразию применяемых способов подачи компонентов и схем ДУ.
Одним из важнейших элементов, характеризующих двигательную установку в целом, является система подачи топлива.
По типу агрегата, создающего давление подачи, различают вытеснительную и турбонасосную подачу топлива.
Отличительной особенностью вытеснительной системы подачи топлива является то, что баки с компонентами топлива находятся под большим давлением, значительно превышающим давление в КС. По этой причине топливные баки приходится делать толстостенными, а, следовательно, массивными.
Применение вытеснительной системы подачи топлива целесообразно при давлениях в КС не больше . Газовытеснительные системы подачи топлива находят в основном применение в двигателях небольшой тяги, рассчитанных на малое время работы.
При насосной системе подачи топлива нет необходимости поддерживать в баках высокое давление. Небольшое давление воздушной подушки в баках () создаётся для обеспечения бескавитационной работы насосов. Насосная система подачи топлива значительно сложнее вытеснительной, но для двигателей средних и больших тяг она предпочтительнее, т. к. вес всей системы питания ЖРД, включая баки с топливом, будет меньше.
Системы питания ЖРД с насосной подачей топлива бывают:
1) с автономной (независимой) турбиной (схема “без дожигания”);
2) с предкамерной турбиной (схема “с дожиганием”).
Системы ЖРД с автономной турбиной применяются для маршевых двигателей средней тяги (максимальное значение давления в КС ). Следует учитывать то, что автономные турбины являются высокоперепадными () и малорасходными, а также то, что они снижают удельный импульс тяги двигателя на 2-6 % из-за выброса “мятого” газа за борт ракеты.
Системы ЖРД с предкамерной турбиной используются в двигателях большой тяги с высоким давлением в КС (). Предкамерные турбины являются высокорасходными и низкоперепадными (). Двигатели данной схемы более экономичны, так как в них исключаются потери удельного импульса тяги из-за расходования топлива на питание турбин. [1]
Так как интервал времени работы ДУ довольно значителен и двигатели имеют среднюю тягу, выбираем насосную систему подачи топлива без дожигания генераторного газа (см. рис.1).
Рис. 1. Схема питания ЖРД с автономной турбиной и газогенератором, работающим на основных компонентах топлива: 1 – камера сгорания; 2, 3 – отсечные клапаны; 4 – насос горючего; 5 – бак горючего; 6 – бак окислителя; 7 – насос окислителя; 8 – газогенератор;
9 – турбина; 10 – выхлопное сопло
Исходя из того, что один из компонентов топлива (кислород) является криогенным, турбину ТНА будем располагать консольно (см. рис.2). Центральное расположение турбины в данном случае нерационально, так как условия работы такого ТНА крайне сложны из-за высоких перепадов температуры в полостях ТНА.
Рис.2. Схема расположения турбины в ТНА: а – центральное расположение турбины;
б – консольное расположение турбины
2. Оценочный расчёт проектных параметров ЖРД
Данный расчёт выполняется согласно [2].
Исходные данные:
1) Тяга 1-й ступени ;
2) Количество двигателей ДУ ;
3) Тяга единичного двигателя ;
4) Топливо керосин;
5) Давление в камере сгорания одиночного двигателя ;
6) Давление на срезе сопла .
Стандартные параметры топлива:
1) Показатель процесса истечения продуктов
сгорания из сопла ;
2) Универсальная газовая постоянная;
3) Удельный импульс тяги;
4) Температура горения в камере сгорания
образцового двигателя ;
5) Плотность окислителя ;
6) Плотность горючего ;
7) Весовое соотношение компонентов топлива .
2.1 Определение удельного импульса КС маршевого двигателя
2.1.1 Температуру горения топлива вычисляем по формуле:
.
2.1.2 Приведенный стандартный импульс , учитывающий потери в КС двигателя и сопловой части, найдём по формуле:
2.1.3 Удельный импульс на расчётном режиме работы сопла , равен
где
; ,
2.1.4 Удельный импульс тяги камер сгорания без учёта потерь на управление
определим по формулам:
В пустоте:
;
На земле :
2.1.5 Удельный импульс КС маршевого двигателя определяем по формуле:
,
где - уменьшение удельного импульса тяги газовыми рулями, м/с;
Принимаем
2.2 Определение удельного импульса ДУ
2.2.1 Найдём плотность топлива :
,
- весовое соотношение компонентов топлива:
2.2.2 Коэффициент
,
где - давление подачи. Принимаем ;
- КПД турбонасосного агрегата.
,
где - КПД турбины. Принимаем ;
- КПД насоса. Принимаем ;
- удельная адиабатическая работа газа на турбине.
При использовании в газогенераторе турбины основных компонентов топлива можно принять:
.
2.2.3 Удельный импульс выхлопного патрубка турбины приближённо определяем по формуле:
.
2.2.4 Удельный импульс двигательной установки определяем по формуле:
.
2.3 Приближённый расчёт основных геометрических параметров двигателя
2.3.1 Определим расход топлива единичного двигателя :
,
где - тяга единичного двигателя, Н. .
2.3.2 Определим диаметр критического сечения сопла :
,
где
2.3.3 Определим диаметр на срезе сопла :
,
где
2 .3.4 Определим диаметр КС :
.
2.3.5 При грубом приближении можно принять:
;
Примем ;
;
;
;
.
2.3.6 Определим радиус кривизны контура сопла:
,
,
где - угол на срезе сопла. Примем .
- угол раскрытия сопла. Примем .
- линейные участки контура сопла. Примем .
2.3.7 Вычислим длину сверхзвуковой части сопла по формуле:
;
.
2.3.8 Длину входа в сопло определим по формуле:
.
2.3.9 Длина двигателя:
.
2.3.10 Длина двигательной установки от среза сопла до узла крепления
.
Рис. 3. Камера сгорания (1:10)
Рис. 4. Расположение ДУ в миделе ракеты (1:84)
3. Расчёт топливного отсека
Определение массовых секундных расходов окислителя и горючего:
;
,
где Z = 4 – количество двигателей в ДУ.
3.1 Объёмный расчёт баков окислителя и горючего
Данная часть расчёта проводится согласно [3].
Исходные данные:
Расход горючего ;
Расход окислителя;
Время работы двигателя;
Плотность горючего;
Плотность окислителя ;
Диаметр ракеты .
Выполнение расчёта:
Полный объём бака горючего:
,
где - расчётный объём горючего;
;
- объём гарантированного запаса горючего;
;
Принимаем ;
- достартовый объём горючего;
;
- объём горючего при работе двигателя на самотёке.
Принимаем .
-
объём горючего, расходуемого от момента включения в работу ТНА до выхода двигателя на расчётный режим.
Принимаем .
- коэффициент объёма воздушной подушки.
принимаем .
Полный объём бака окислителя:
По аналогии с расчётом объёма бака горючего рассчитываем объём бака окислителя.
,
где ;
;
;
;
;
Принимаем .
Расчёт продольных размеров баков
Определяем радиус сферы верхнего и нижнего днищ баков (рис.5.):
,
где.
Высота верхнего и нижнего днищ баков:
.
Объём сферического сегмента днищ:
.
Размеры бака горючего.
Высота цилиндрической части бака горючего:
.
Полная высота бака горючего:
.
Объём заправляемого горючего:
.
Объём воздушной подушки:
.
Высоту воздушной подушки от зеркала жидкости до полюса верхнего днища бака найдём из выражения:
.
Получаем .
Рис.5. Расчётная схема топливного бака
Высота уровня жидкости в баке:
.
Размеры бака окислителя.
По аналогии с расчётом размеров бака горючего рассчитываем размеры бака окислителя.
Высота цилиндрической части бака окислителя:
.
Полная высота бака окислителя:
.
Объём заправляемого окислителя:
.
Объём воздушной подушки:
.
Высоту воздушной подушки от зеркала жидкости до полюса верхнего днища бака найдём из выражения:
.
Получаем .
Высота уровня жидкости в баке:
.
3.2 Оценочный расчет массы топливного отсека
Массу топливного отсека определяют суммой масс топливных баков под основные компоненты топлива, массы устройств наддува и узлов крепления и массы вспомогательных баков, при наличии таковых.
При работе ТНА на основных компонентах топлива масса топливного отсека равна:
,
где , - массовые коэффициенты, определяемые по формулам:
;
.
, - коэффициенты, характеризующие массу топливных баков под основное топливо.
, - коэффициенты, характеризующие массу устройств наддува и узлов крепления.
, .
В оценочных расчетах можно принять:
;
,
где - плотность топлива;
- относительная толщина оболочки для алюминиевых сплавов.
Масса бака горючего:
.
Масса бака окислителя:
.
4. Составление компоновочной схемы ступени
Рис.6. Компоновочная схема первой ступени ракеты (М 1:50)
5. Выбор и обоснование схемы системы наддува
Системы наддува служат для обеспечения и поддержания требуемого давления в топливных баках.
Классификация систем наддува может быть представлена следующей схемой:
Рис.7. Классификация систем наддува
5.1 Оценочный расчёт массы и габаритов “холодной” системы наддува
Исходные данные:
Давление насыщенных паров керосина ;
Давление насыщенных паров кислорода ;
Плотность керосина ;
Плотность кислорода ;
Объем заправляемого окислителя ;
Объем заправляемого горючего .
Рис.8. Расчётная схема
Выполнение расчёта
5.1.1 Определение давления в газовой подушке бака горючего
Расчёт минимального давления
Значения определяется по трём условиям.
1) Условие бескавитационной работы насоса горючего в момент старта:
, [2]
где - гидростатическое давление столба жидкости.
,
где - суммарные потери давления.
,
где - скорость течения компонента в магистрали;
- коэффициент местного сопротивления;
- осевая перегрузка в момент старта;
- высота столба жидкости;
- кавитационный запас; выбирается из диапазона
.
Принимаем: .
2) Условие бескавитационной работы насоса горючего
28-04-2015, 23:35