Чтобы увидеть значение теории относительности Эйнштейна для эволюции физической мысли, следует прежде всего остановиться на самых общих понятиях относительности положения и движения тел и однородности пространства и времени. В теории Эйншиейна фигурирует однородность и изотропность пространства-времени.
Представим себе материальную частицу, затерянную в бесконечном, абсолютно пустом пространстве. Что в этом случае означают слова "пространственное положение" частицы? Соответствует ли этим словам какое-либо реальное свойство частицы?
Если бы в пространстве существовали другие тела, мы могли бы определить по отношению к ним положение данной частицы, но если пространство пусто, положение данной частицы оказывается бессодержательным понятием. Пространственное положение имеет физический смысл только в том случае, когда в пространстве имеются иные тела, служащие телами отсчета. Если брать в качестве тел отсчета разные тела, мы придем к различным определениям пространственного положения данной частицы. С любым телом мы можем связать некоторую систему отсчета, например систему прямоугольных координат. Такие системы равноправны: в какой бы системе отсчета мы ни определяли положение точек, из которых состоит данное тело, размеры и форма тела будут одними и теми же, и, измеряя расстояния между точками, мы не найдем критерия, чтобы отличить одну систему отсчета от другой. Мы можем поместить начало координат в любой точке пространства, мы можем затем перенести это начало в любую другую точку, либо повернуть оси, либо сделать и то и другое - форма и размеры тела при таком переносе и повороте не изменятся, так как не изменится расстояние между любыми двумя фиксированными точками этого тела. Неизменность этого расстояния при переходе от одной системы отсчета к другой называют инвариантностью по отношению к указанному переходу. Мы говорим, что расстояния между точками тела являются инвариантами при переходе от одной прямоугольной системы координат другой, с иным началом и иным направлением осей. Расстояния между точками тела служат инвариантами таких координатных преобразований. В инвариантности расстояний между точками относительно переноса начала координат выражается однородность пространства, равноправность всех его точек относительно начала координат.
Если точки пространства равноправны, то мы не можем определить пространственное положение тела абсолютным образом, мы не можем найти привилегированную систему отсчета. Когда мы говорим о положении тела, т.е. о координатах его точек, то необходимо указывать систему отсчета. "Пространственное положение" в этом смысле является относительным понятием - совокупностью величин, которые меняются при переходе от одной системы координат к другой системе, в отличие от расстояний между точками, которые не меняются при указанном переходе.
Однородность пространства выражается, далее, в том, что свободное тело, переходя из одного места в другое, сохраняет одну и ту же скорость и соответственно сохраняет приобретенный им импульс. Каждое изменение скорости и, соответственно, импульса, мы объясняем не тем, что тело передвинулось в пространстве, а взаимодействием тел. Изменение импульса данного тела мы относим за счет некоторого силового поля, в котором оказалось рассматриваемое тело.
Нам известна также однородность времени. Она выражается в сохранении энергии. Если с течением времени не меняется воздействие, испытываемое данным телом со стороны других тел, иными словами, если иные тела действуют неизменным образом на данное тело, то энергия его сохраняется. Мы относим изменение энергии тела за счет изменения во времени действующих на него сил, а не за счет самого времени. Время само по себе не меняет энергии системы, и в этом смысле все мгновения равноправны. Мы не можем найти во времени привилегированного мгновения, также как не можем найти в пространстве точку, отличающуюся от других точек по поведению попавшей в эту точку частицы. Поскольку все мгновения равноправны, мы можем отсчитывать время от любого мгновения, объявив его начальным. Рассматривая течение событий, мы убеждаемся, что они протекают неизменным образом, независимо от выбора начального момента, начала отсчета времени.
Мы могли бы сказать, что время относительно в том смысле, что при переходе от одного начала отсчета времени к другому описание событий остается справедливым и не требует пересмотра. Однако обычно под относительностью времени понимают нечто иное. В простом и очевидном смысле независимости течения событий от выбора начального момента относительность времени не могла бы стать основой новой теории, совсем не очевидной, опрокидывающей обычное представление о времени.
Под относительностью времени мы будем понимать зависимость течения времени от выбора пространственной системы отсчета. Соответственно абсолютным временем называется время, не зависящее от выбора пространственной системы координат, протекающее единообразно на всех движущихся одна относительно другой системах отсчета, - последовательность моментов, наступающих одновременно во всех точках пространства. В классической физике существовало представление о потоке времени, который не зависит от реальных движений тела, - о времени, которое течет во всей Вселенной с одной и той же быстротой. Какой реальный процесс лежит в основе подобного представления об абсолютном времени, о мгновении, одновременно наступающем в отдаленных пунктах пространства?
Вспомним условия отождествления времени в разных точках пространства.
Время события, происшедшего в точке а1 , и время события, происшелшего в точке а2 можно отождествить, если события связаны мгновенным воздействием одного события на другое. Пусть в точке а1 находится твердое тело, соединенное абсолютно жестким, совершенно недеформирующимся стержнем с телом, находящимся в точке а2 . Толчок, полученный телом в точке а1 , мгновенно, с бесконечной скоростью, передается через стержень телу в точкеа2 . Оба тела сдвинутся в одно и то же мгновение. Но все дело в том, что в природе нет абсолютно жестких стержней, нет мгновенных действий одного тела на другое. Взаимодействия тел передаются с конечной скоростью, никогда не превышающей скорости света. В стержне, соединяющем тела, при толчке возникает деформация, которая распространяется с конечной скоростью от одного конца стержня к другому, подобно тому, как световой сигнал идет с конечной скоростью от источника света к экрану. В природе нет мгновенных физических процессов, соединяющих события, происшедшие в удаленных один от другого пунктах пространства. Понятие "один и тот же момент времени" имеет абсолютный смысл, пока мы не сталкиваемся с медленными движениями тел и можем приписать бесконечную скорость световому сигналу, толчку, переданному через твердый стержень или любому другому взаимодействию движущихся тел. В мире быстрых движений, при сравнении с которыми распространению света и взаимодействию между телами уже нельзя приписывать бесконечно большую скорость,
- в этом мире понятие одновременности имеет относительный смысл, и мы должны отказаться от привычного образа единого времени, текущего во всей Вселенной, - последовательности одних и тех же, одновременных, моментов в различных пунктах пространства.
Классическая физика исходит из подобного образа. Она допускает, что одно и то же мгновенно наступает повсюду - на Земле, на Солнце, на Сириусе, на внегалактических туманностях, отстоящих от нас так далеко, что их свет идет к нам миллиарды лет.
Если бы взаимодействия тел (например силы тяготения, связывающие все тела природы) распространялись мгновенно, с бесконечной скоростью, мы могли бы говорить о совпадении момента, когда одно тело начинает воздействовать на другое, и момента, когда второе тело, удаленное от первого, испытывает это воздействие. Назовем воздействие тела на удаленное от него другое тело сигналом. Мгновенная передача сигнала - основа отождествления моментов, наступивших в отдаленных пунктах пространства. Такое отождествление можно представить в виде синхронизации часов. Задача состоит в том, чтобы часы в в точке а1 и в точке а2 показывали одно и то же время. Если существуют мгновенные сигналы, эта задача не составляет труда. Часы можно было бы синхронизировать по радио, световым сигналом, выстрелом из пушки, механическим импульсом (посадить, например, стрелки часов в а1 и в а2 на один длинный абсолютно жесткий вал), если бы радиоприемник, свет, звук и механические напряжения в вале передавались с бесконечно большой скоростью. В этом случае мы могли бы говорить о чисто пространственных связях в природе, о процессах, протекающих в нулевой промежуток времени. Соответственно трехмерная геометрия имела бы реальные физические прообразы. Пространство в этом случае мы бы могли рассматривать вне времени, и такой взгляд давал бы точное представление о действительности. Временные мгновенные сигналы служат прямым физическим эквивалентом трехмерной геометрии. Мы видим, что трехмерная геометрия находит прямой прообраз в классической механике, которая включает представление о бесконечной скорости сигналов, о мгновенном распространении взаимодействий между отдаленными телами. Классическая механика допускает, что существуют реальные физические процессы, которые могут быть с абсолютной точностью описаны мгновенной фотографией. Мгновенная фотография, разумеется стереоскопическая - это как бы трехмерное пространственное сечение пространственно-временного мира, это четырехмерный мир событий, взятый в один и тот же момент. Бесконечно быстрое взаимодействие - процесс, который может быть описан в пределах мгновенной временной картины мира.
Но теория поля как реальной физической среды исключает мгновенное ньютоново дальнодействие и мгновенное распространение сигналов через промежуточную среду. Не только звук, но и свет, и радиосигналы имеют конечную скорость. Скорость света - предельная скорость сигналов.
Каков же в этом случае физический смысл одновременности? Что соответствует последовательности одних и тех же для всей Вселенной моментов? Что соответствует понятию единого времени, единообразно протекающего во всем мире?
Мы можем найти некоторый физический смысл понятия одновременности и таким образом придать самостоятельную реальность чисто пространственному аспекту бытия, с одной стороны, и абсолютному времени - с другой, даже в том случае, когда все взаимодействия распространяются с конечной скоростью. Но условием для этого служит существование неподвижного в целом мирового эфира и возможность определить скорости движущихся тел абсолютным образом, относя их к эфиру как единому привилегированному телу отсчета.
Представим себе корабль с экранами на носу и на корме. в центре корабля на равных расстояниях от обоих экранов зажигают фонарь. Свет фонаря одновременно достигает экранов, и мгновения, когда это происходит можно отождествить. Свет падает на экран, находящийся на носу корабля в то же самое мгновение, что и на экран, находящийся на корме. Таким образом, мы находим физический прообраз одновременности.
Синхронизация с помощью световых сигналов, одновременно прибывающих в два пункта из источника, расположенного на равном расстоянии от них, возможна, если источник света и указанные два пункта покоятся в мировом эфире, т.е. когда корабль неподвижен по отношению к эфиру. Синхронизация возможна и в том случае, когда корабль движется в эфире. В указанном случае свет дойдет до экрана на носу корабля немного позже, а до экрана на корме - немного раньше. Но, зная скорость корабля относительно эфира, мы можем определить опережение луча, идущего к экрану на корме и запаздывание луча, идущего к экрану на носу, и, учитывая указанные опережение и запаздывание, синхронизировать часы, установленные на корме и на носу корабля. Мы можем, далее, синхронизировать часы на двух кораблях, движущихся относительно эфира с различными, но постоянными, известными нам скоростями. Но для этого также необходимо, чтобы скорость кораблей относительно эфира имела определенный смысл и определенное значение.
Здесь возможны два случая. Если корабль при движении полностью увлекает за собой эфир, находящийся между фонарем и экранами, то не произойдет запаздывания луча, идущего к экрану на носу корабля. При полном увлечении эфира, корабль не смещается относительно эфира, находящегося над его палубой, а скорость света относительно корабля не будет зависеть от движения корабля. Тем не менее, мы сможем зарегистрировать зарегистрировать движение корабля с помощью оптических эффектов. По отношению к кораблю скорость света не изменится, но она изменится по отношению к берегу. Пусть корабль движется вдоль набережной: на набережной - два экранаа1 и а2 , причем расстояние между ними равно расстоянию между экранами на корабле. Когда экраны на движущемся корабле оказались против экранов на набережной, в центре корабля зажигается фонарь. Если корабль увлекает за собой эфир, то свет фонаря дойдет одновременно до экрана на корме и до экрана на носу, но в этом случае свет дойдет в различные моменты до экранов на неподвижной набережной. В одном направлении скорость движения корабля относительно набережной будет прибавляться к скорости света, а в другом направлении скорость движения корабля нужно будет вычесть из скорости света. Такой результат - различные скорости света относительно берега - получится, если корабль увлекает эфир. Если же корабль не увлекает эфир, то свет будет двигаться с одной и той же скоростью относительно берега и с различной скоростью относительно корабля. Таким образом, изменение скорости света окажется результатом движения корабля в обоих случаях. Если корабль движется, увлекая эфир, то меняется скорость относительно берега; если же корабль не увлекает эфир, то меняется скорость света относительно самого корабля.
В середине XIX века техника оптических экспериментов и измерений позволила уловить очень небольшие различия в скорости света. Оказалось возможным проверить, увлекают движущиеся тела эфир, или не увлекают. В 1851 г. Физо (1819 - 1896) доказал6 что тела не увлекают полностью эфир. Скорость света, отнесенная к неподвижным телам, не меняется, когда свет проходит через движущиеся среды. Физо пропускал луч света через неподвижную трубку, по которой текла вода. По существу вода играла роль корабля, а трубка
- неподвижного берега. Результат опыта Физо привел к картине движения тел в неподвижном эфире без увлечения эфира. Скорость этого движения можно определить по запаздыванию луча, догоняющего тело (например, луча направленного к экрану на носу движущегося корабля), по сравнению с лучом, идущим навстречу телу (например, по сравнению с лучом фонаря, направленным к экрану на корме). Тем самым можно было, как казалось тогда, отличить тело, неподвижное относительно эфира, от тела, движущегося в эфире. В первом скорость света одна и та же во всех направлениях, во втором на меняется в зависимости от направления луча. Существует абсолютное различие между покоем и движением, они отличаются друг от друга характером оптических процессов в покоющихся и движущихся средах.
Подобная точка зрения позволяла говорить об абсолютной одновременности событий и о возможности абсолютной синхронизации часов. Световые сигналы достигают точек, расположенных на одном и том же расстоянии от неподвижного источника, в одно и то же мгновение. Если же источник света и экраны движутся относительно эфира, то мы можем определить и учесть запаздывание светового сигнала, вызванное этим движением, и считать одним и тем же мгновением
1) момент попадания света на передний экран с поправкой на запаздывание и 2) момент попадания света на задний экран с поправкой на опережение. Различие в скорости распространения света будет свидетельствовать о движении источника света и экранов по отношению к эфиру - абсолютному телу отсчета.
Эксперимент, который должен был показать изменение скорости света в движущихся телах и соответственно абсолютных характер движения этих тел, был выполнен в 1881 г. Майкельсоном (1852 -
1931). В последствии его не раз повторяли. По существу, эксперимент Майкельсона соответствовал сравнению скорости сигналов, идущих к экранам на корме и на носу движущегося корабля, но в качестве корабля была использована сама Земля, движущаяся в пространстве со скоростью около 30 км/сек. Далее, сравнивали не скорость луча, догоняющего тело и луча, идущего навстречу телу, а скорость распространения света в продольном и поперечном направлениях. В инструменте, примененном в опыте Майкельсона, так называемом интерферометре, один луч шел по направлению движения Земли
- в продольном плече интерферометра, а другой луч - в поперечном плече. Различие в скоростях этих лучей должно было продемонстрировать зависимость скорости света в приборе от движения Земли.
Результаты эксперимента Майкельсона оказались отрицательными. На поверхности Земли свет движется с одной и той же скоростью во всех направлениях.
Такой вывод казался крайне парадоксальным. Он должен был привести к принципиальному отказу от классического правила сложения скоростей. Скорость света одна и та же во всех телах, движущихся по отношению друг к другу равномерно и прямолинейно. Свет проходит с неизменной скоростью, приблизительно равной 300000 км/сек., мимо неподвижного тела, мимо тела, движущегося навстречу свету, мимо тела, которое свет догоняет. Свет - это путник, который идет по полотну железной дороги, между путями, с одной и той же скоростью относительно встречного поезда, относительно поезда, идущего в том же направлении, относительно самого полотна, относительно пролетающего над ним самолета и т.д., или пассажир, который движется по вагону мчащегося поезда с одной и той же скоростью относительно вагона и относительно Земли.
Чтобы отказаться от классических принципов, казавшихся совершенно очевидными и непререкаемыми, понадобилась гениальная сила и смелость физической мысли. Непосредственные предшественники Эйнштейна подошли очень близко к теории относительности, но они не могли сделать решающего шага, не могли допустить, что свет не кажущимся образом, а в действительности распространяется с одной и той же скоростью относительно тел, которые смещаются одно относительно к другому.
Лоренц (1853-1928) выдвинул теорию, сохраняющую неподвижный эфир и классическое правило сложения скоростей и вместе с тем совместимую с результатами опытов Майкельсона. Лоренц предположил, что все тела при движении испытывают продольное сокращение, они уменьшают свою протяженность вдоль направления движения.
Если
10-09-2015, 22:57