Логика. Суждение. Умозаключение

суждениях А, Е,I, О.

Суждение А (Все S суть Р). «Все студенты нашей группы (S) сдали экзамены (Р)». Субъект распределен, он взят в полном объеме: речь идет обо всех студентах нашей группы. Предикат этого суждения не распределен, так как в нем мыслится только часть лиц, сдавших экзамены, совпадающая со студентами нашей группы.

Таким образом, в общеутвердительных суждениях S распреде­лен, а Р не распределен. Однако в общеутвердительных суждениях, субъект и предикат которых имеют одинаковый объем, распределен не только субъект, но и предикат. К таким суждениям относятся общевыделяющие суждения, а также определения, подчиняющиеся правилу соразмерности.

Суждение Е (Ни одно S не есть Р). «Ни один студент нашей группы (S) не является неуспевающим (Р)». И субъект, и предикат взяты в полном объеме. Объем одного термина полностью исключа­ется из объема другого: ни один студент нашей группы не входит в число неуспевающих, и ни один неуспевающий не является студен­том нашей группы. Следовательно, в общеотрицательных суждени­ях и S, и Р распределены.

Суждение I (Некоторые S суть Р). «Некоторые студенты нашей группы (S) – отличники (Р)». Субъект этого суждения не распре­делен, так как в нем мыслится только часть студентов нашей груп­пы, объем субъекта лишь частично включается в объем предиката. Но и объем предиката лишь частично включается в объем субъекта: не все, а только некоторые отличники – студенты нашей группы.

Следовательно, в частноутвердительном суждении ни S, ни Р не распределены.

Суждение О (некоторые Sне суть Р). «Некоторые студенты нашей группы (S) – не отличники (Р)». Субъект этого суждения не распределен, пре­дикат распределен, в нем мыслятся все отличники, ни один из кото­рых не включается в ту часть студентов нашей группы, которая мыслится в субъекте. Следовательно, в частноотрицательном сужде­нии S не распределен, а Р распределен.

г) Правила вывода из суждений по логическому квадрату

Несравнимыми среди простых являются суждения, имеющие различные субъекты или предикаты. Таковы, например, два суждения: «Среди космонавтов есть летчики»; «Среди космонавтов есть женщины».

Сравнимыми являются суждения с одинаковыми субъектами и предикатами и различающиеся связкой или квантором. Обычно их называют суждениями одинаковой материи. Например: «Все амери­канские индейцы живут в резервациях»; «Некоторые американские индейцы не живут в резервациях».

Отношения между простыми суждениями обычно рассматрива­ются с помощью мнемонической схемы, называемойлогическим квадратом . Его вершины символизируют простые катего­рические суждения – А, Е, I, О; стороны и диагонали – отношения между суждениями.

Противоположность (контрарность)

Частичная совместимость (субконтрарность)

Противоречие (контрадикторность)

Среди сравнимых различаютсовместимые и несовместимые суждения.

К совместимым относятся суждения, которые одновременно могут быть истинными. Различают три вида совместимости: 1)эк­вивалентность (полная совместимость), 2)частичная совмести­мость (субконтрарность) и 3)подчинение.

1. Эквивалентными являются такие суждения, которые имеют одинаковые логические характеристики: одинаковые субъ­екты и предикаты, однотипную – утвердительную или отрицатель­ную – связку, одну и ту же выраженную квантором количественную характеристику. С помощью логического квадрата отношения между простыми эквивалентными суждениями не иллюстрируются.

2. Частичная совместимость характерна для суждений I u О, которые могут быть одновременно истинными, но не могут быть одновременно ложными.

3. Подчинение имеет место междусуждениями А и I, Е и О. Для них характерны следующие две зависимости.

При истинности общего суждения частное всегда будет истин­ным

При ложности частного суждения общее суждение также будет ложным

Отношение несовместимости.

Несовместимыми являются суждения А и Е, А и О, Е и I, которые одновременно не могут быть истинными. Различают два вида несовместимости: противоположность и противоречие.

1. Противоположными (контрарными) являются суждения А и Е, которые одновременно не могут быть истинными, но могут быть одновременно ложными.

2. Противоречащими (контрадикторными) являются сужде­ния А и О, Е и I, которые одновременно не могут быть ни истин­ными, ни ложными.

Hесовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому от­дельному предмету может быть либо присущ, либо не присущ оп­ределенный признак.


4. Умозаключение как форма мысли

а) Понятие и виды умозаключений

Умозаключение - это форма мышления, позволяющая из одного или нескольких суждений, называемых посылками, извлекать с помощью правил логики новое суждение - заключение.

В умозаключении различают посылки - высказывания, представляющие исходное знание, и заключение - высказывание, к которому мы приходим в результате умозаключения. В естественном языке существуют слова и словосочетания, указывающие как на заключение («значит», «следовательно», «отсюда видно», «поэтому», «из этого можно сделать вывод» и тому подобное), так и на посылки умозаключения («так как», «поскольку», «ибо», «принимая во внимание, что...», «ведь» и тому подобное). Представляя суждение в некоторой стандартной форме, в логике принято указывать вначале посылки, а потом заключение, хотя в естественном языке их порядок может быть произвольным: вначале заключение - потом посылки; заключение может находиться «между посылками». В приведенном в начале главы примере посылками служат два первых высказывания, а заключением - третье высказывание («плотность Земли не одинакова во всех ее частях»),
Понятие умозаключения как логической операции тесно связано с понятием логического следования. Учитывая эту связь, мы различаем правильные и неправильные умозаключения. Умозаключение, представляющее собой переход от посылок к заключению, является правильным, если между посылками и заключением имеется отношение логического следования. В противном случае - если между посылками и заключением нет такого отношения - умозаключение неправильно. Естественно, что логику интересуют лишь правильные умозаключения. Что же касается неправильных, то они привлекают внимание логики лишь с точки зрения выявления возможных ошибок. В делении умозаключений на правильные и неправильные мы должны различать отношение логического следования двух видов дедуктивное и индуктивное. Первое гарантирует истинность заключения при истинности посылок. Второе - при истинности посылок - обеспечивает лишь некоторую степень правдоподобия заключения (некоторую вероятность его истинности). Соответственно этому умозаключения делятся на дедуктивные и индуктивные. Первые иначе еще называют демонстративными (достоверными), а вторые – правдоподобными (проблематичными).

б) Простой категорический силлогизм: правила, фигуры и модус

В силлогизм входит ровно три термина:

· S – меньший термин: субъект заключения (входит также в меньшую посылку);

· P – больший термин: предикат заключения (входит также в большую посылку);

· M – средний термин: входит в обе посылки, но не входит в заключение

Подлежащие S (субъект) – то, относительно чего мы высказываем (делится на два вида):

1. Определенное: Единичное, Частное, Множественное

· Единичные [суждения] – в которых подлежащее является индивидуальным понятием. Прим: «Ньютон открыл закон тяготения»

· Частное суждение – в котором подлежащим суждения является понятие, взятое в части своего объема. Прим: «Некоторые S суть P»

· Множественное суждение - это те, в которых несколько подлежащих классовых понятий. Прим: «насекомые, пауки, раки есть членистоногие»

2. Неопределенное. Прим: «светает», «больно» и тому подобное.

Сказуемое P (предикат) – то, что мы высказываем (3 вида суждений):

· Повествовательные – это суждение относительно событий, состояний, процессов или деятельности скоропроходящих. Прим: «Роза в саду цветет».

· Описательные – когда одному или многим предметам приписывается какое-нибудь свойство. Субъектом всегда является определенная вещь. Пример: «Огонь горяч», «снег бел».

Отношение между подлежащим и сказуемым:

1. Суждения тождества – понятия субъекта и предиката имеют один и тот же объем. Прим: «всякий равносторонний треугольник есть равноугольный треугольник»

2. Суждения подчинения – понятия с менее широким объемом подчиняется понятию с более широким объемом. Прим: «Собака есть домашнее животное»

3. Суждения отношения - именно пространства, времени, отношения. Прим: «Дом находится на улице»

Фигурами силлогизма называются формы силлогизма, отличающиеся расположением среднего термина в посылках:

Фигура 1 Фигура 2 Фигура 3 Фигура 4
Бо́льшая посылка: M–P P–M M–P P–M
Меньшая посылка: S–M S–M M–S M–S
Заключение: S–P S–P S–P S–P

Каждой фигуре отвечают модусы – формы силлогизма, различающиеся количеством и качеством посылок и заключения. Модусы изучались ещё средневековыми школами, и для правильных модусов каждой фигуры были придуманы мнемонические имена:

Фигура 1 Фигура 2 Фигура 3 Фигура 4
Barbara Cesare Darapti Bramantip
Celarent Camestres Disamis Camenes
Darii Festino Datisi Dimaris
Ferio Baroco Felapton Fesapo
Bocardo Fresison
Ferison

в) Условное и разделительно – категорическое умозаключение

Чисто условным называется умозаключение, обе посылки кото­рого являются условными суждениями.

Схема чисто условного умозаключения:

-» q) ^ (q -> г) р->г

Вывод в чисто условном умозаключении основывается на прави­ле:следствие следствия есть следствие основания.

Умозаключение, в котором заключение получается из двух услов­ных посылок, относится к простым. Однако заключение может сле­довать из большего числа посылок, которые образуют цепь услов­ных суждений. Такие умозаключения называются сложными.

Условно-категорическим называется умозаключение, в кото­ром одна из посылок –условное, а другая посылка и заключение – категорические суждения.

Это умозаключение имеет два правильных модуса: 1) утверждаю­щий и 2) отрицающий.

1. В утверждающем модусе посылка, выражен­ная категорическим суждением, утверждает истинность основания условной посылки, а заключение утверждает истинность следствия;

рассуждение направлено от утверждения истинности основания к утверждению истинности следствия.

2. В отрицающем модусе посылка, выраженная категорическим суждением, отрицает истинность следствия услов­ной посылки, а заключение отрицает истинность основания. Рассуж­дение направлено от отрицания истинности следствия к отрица­нию истинности основания.

Из четырех модусов условно-категорического умозаключе­ния, исчерпывающих все возможные комбинации посылок, досто­верные заключения дают два: утверждающий (modus ponens) (1) и отрицающий (modus tollens) (2). Они выражают законы логики и называются правильными модусами условно-категорического умо­заключения. Эти модусы подчиняются правилу: утверждение осно­вания ведет к утверждению следствия и отрицание следствия – к отрицанию основания. Два других модуса (3 и 4) достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходи­мостью к отрицанию следствия и утверждение следствия не ведет с необходимостью к утверждению основания.

г) Условно – категорическое умозаключение: правильные и

неправильные модусы

Формула ((а - Ь) л Ь) -» а (3) не является законом логики. Она означает, что нельзя достоверно умозаключить от утверждения следствия к утверждению основания. Люди иногда неправильно умозаключают так: Если бухта замерзла, то суда не могут входить в бухту. Суда не могут входить в бухту. Бухта замерзла. Заключение будет лишь вероятностным суждением, то есть вероятно, что бухта замерзла, но возможно и то, что дует сильный ветер, или бухта заминирована, или существует другая причина, по которой суда не могут входить в бухту. Вероятностное заключение получится и в таком умозаключении: Если данное тело – графит, то оно электропроводно. Данное тело электропроводно. Вероятно, данное тело – графит. Второй вероятностный модус. Это второй модус, не дающий достоверного заключения. Структура его:

Если а, то Ь. Не-а._____ Вероятно, не-Ь. Схема: а -» Ь ~а Вероятно, Ъ

Формула ((а -» Ь) л a) -» b (4) не является законом логики. Она означает, что нельзя принимать заключение за достоверное, умозаключая от отрицания основания к отрицанию следствия.Некоторые врачи ошибочно рассуждают так: Если человек имеет повышенную температуру, то он болен. Данный человек не имеет повышенной температуры.____ Данный человек не болен.

Учащиеся в школе также допускают логические ошибки при построении умозаключений. Вот пример: Если тело подвергнуть трению, то оно нагреется. Тело не подвергли трению. Тело не нагрелось.

Заключение здесь только вероятностное, но не достоверное, ибо тело могло нагреться по какой-либо другой причине (от солнца, в печи и так далее).

Заметим, что приведение такого рода примеров вполне достаточно для того, чтобы показать, что формы умозаключений, выражаемые формулами (3) и (4), неправильны. Но никакое количество примеров применения форм, соответствующих формулам (1) и (2), не в состоянии – если мы оперируем только примерами – обосновать их логической правильности. Для такого обоснования требуется уже некоторая логическая теория. Такая теория, фактически отсутствующая в традиционной логике, содержится в алгебре логики. Если формула, в которой конъюнкция посылок и предполагаемое заключение соединены знаком импликации, не является тождественно-истинной, то есть не выражает закона логики, то в умозаключении заключение не является достоверным. С помощью табличного метода можно доказать, что колонки таблицы 1, соответствующие формулам (1) modus ponens и (2) modus tollens выражают законы логики, а это означает, что modus ponens и modus tollens представляют собой логически правильные формы умозаключений.

((а -» Ь) л Ь) -» а и ((а -* Ь) л ~а) -» Ъ не являются тождественно- истинными высказываниями, то есть законами логики.

Если умозаключают от утверждения следствия к утверждению основания, то можно прийти к ложному заключению вследствие множественности причин, из которых может вытекать одно и то же следствие. Например, выясняя причину заболевания человека, надо перебрать все возможные причины: простудился, переутомился, был в контакте в бациллоносителем и так далее.

д) Условно – разделительное умозаключение. Сложные и простые

модусы

Умозаключение, в котором одна посылка условное, а другая – разделительное суждения, называется условно-разделительным, или лемматическим.

Разделительное суждение может содержать две, три и большее число альтернатив, поэтому лемматические умозаключения делятся на дилеммы (две альтернативы), трилеммы (три альтернативы) и так далее.

Различают два вида дилемм: кон­структивную (созидательную) и деструктивную (разрушительную), каждая из которых делится на простую и сложную.

В простой конструктивной дилемме условная посылка содер­жит два основания, из которых вытекает одно и то же следствие. Разделительная посылка утверждает оба возможных основания, за­ключение утверждает следствие. Рассуждение направлено от ут­верждения истинности оснований к утверждению истинности след­ствия.

Схема простой конструктивной дилеммы:

(р-»г)^(q->г),рvq

В сложной конструктивной дилемме условная посылка содер­жит два основания и два следствия. Разделительная посылка утверж­дает оба возможных следствия. Рассуждение направлено от утверж­дения истинности оснований к утверждению истинности следствий.

Схема сложной конструктивной дилеммы:

(p->q)^(r-»s), pvr

qvs

В простой деструктивной дилемме условная посылка содержит одно основание, из которого вытекает два возможных следствия. Разделительная посылка отрицает оба следствия, заключение отри­цает основание. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности основания.

Схема простой деструктивной дилеммы:

(p->q)^(p-»r),1qv1r

1p

В сложной деструктивной дилемме условная посылка содержит два основания и два следствия. Разделительная посылка отрицает оба следствия, заключение отрицает оба основания. Рассуждение направлено от отрицания истинности следствий к отрицанию истин­ности оснований.

Схема сложной деструктивной дилеммы:

(p-»q)^(r->s),1qv1s

1pv1r

е) Сокращенный силлогизм

Силлогизм, в котором выражены все его части – обе посылки и заключение, называется полным. Однако на практике чаще использу­ются силлогизмы, в которых одна из посылок или заключение явно не выражаются, а подразумеваются.

Силлогизм с пропущенной посылкой или заключением называет­ся сокращенным силлогизмом, или энтимемой.

Энтимема в переводе с греческого буквально означает «в уме». Широко используются энтимемы простого категорического сил­логизма, особенно выводы по первой фигуре. Например: «Н. совер­шил преступление и поэтому подлежит уголовной ответственности». Здесь пропущена большая посылка: «Лицо, совершившее преступ­ление, подлежит уголовной ответственности». Она представляет собой общеизвестное положение, формулировать которое необяза­тельно.

Полный силлогизм строится по 1-й фигуре:

Лицо, совершившее преступление (М), подлежит уголовной

ответственности (р)

Н. (s) совершил преступление (М)

Н. (s) подлежит уголовной ответственности (р)

В зависимости от того, какая часть силлогизма пропущена, разли­чают три вида энтимемы: с пропущенной большей посылкой, с про­пущенной меньшей посылкой и с пропущенным заключением.

Умозаключение в форме энтимемы может быть построено и по 2-й фигуре; по 3-й фигуре оно строится редко.

Форму энтимемы принимают также умозаключения, посылками которых являются условные и разделительные суждения.

Условно-категорический силлогизм с пропущенной большей по­сылкой: «Уголовное дело не может быть возбуждено, так как собы­тие преступления не имело места».

Здесь пропущена большая посылка – условное суждение «Если событие преступления не имело места, то уголовное дело не может быть возбуждено». Она содержит известное положение Уголовно-процессуального кодекса, которое подразумевается.

Разделительно-категорический силлогизм с опущенной большей посылкой: «По данному делу не может быть вынесен оправдатель­ный приговор, он должен быть обвинительным».

Большая посылка – разделительное суждение «По данному делу может быть вынесен либо оправдательный, либо обвинительный приговор» не формулируется.

Разделительно-категорический силлогизм с опущенным заклю­чением: «Смерть произошла либо в результате убийства, либо в результате самоубийства, либо в результате несчастного случая, либо в силу естественных причин. Смерть произошла в результате несчастного случая».

Заключение, отрицающее все другие альтернативы, обычно не формулируется.

Использование сокращенных силлогизмов обусловлено тем, что пропущенная посылка или заключение либо содержит известное положение, которое не нуждается в устном или письменном выраже­нии, либо в контексте выраженных частей умозаключения она легко подразумевается. Именно поэтому рассуждение протекает, как пра­вило, в форме энтимем. Но, поскольку в энтимеме выражены не все части умозаключения, скрывающуюся в ней ошибку обнаружить труднее, чем в полном умозаключении. Поэтому для проверки пра­вильности рассуждения следует найти пропущенные части умозак­лючения и восстановить энтимему в полный силлогизм.

ж) Индуктивные умозаключения. Виды индукции

Индукция - это умозаключение, в результате которого на основе знания об отдельных предметах какого-либо класса делается вывод обо всем классе этих предметов.

Наблюдение природных явлений и обобщение полученных результатов представляют собой один из самых распространенных методов постижения окружающего мира. Факты наталкивают человека на общие закономерности, наводят на них. Поэтому Аристотель называл этот вид умозаключения наведением.
Индукцию принято подразделять на полную и неполную; последняя в свою очередь распадается еще на две разновидности. Кроме того, имеется также научная индукция.

Самой простой разновидностью индуктивного процесса является полная индукция. В этом случае перечисляются все без исключения предметы данного класса. Заключение суммирует итог. С полной индукцией весьма часто приходится сталкиваться в повседневной практической деятельности. Мы можем делать обобщающие выводы о цене на разнообразные товары такого-то предприятия, о морозных днях на прошлой неделе, об этажности зданий в данном квартале.Неполная индукция. В научном познании возможность исчерпывающим образом охватить все изучаемые явления


10-09-2015, 20:59


Страницы: 1 2 3
Разделы сайта