Парадоксы логики

видела на прошлой неделе в витрине ювелирного магазина».

Что же теперь делать его несчастной жене? С одной стороны, она знает, что муж никогда не лжет и всегда выполняет свои обещания. Однако если он все же подарит ей золотой браслет, то это уже не будет сюрпризом и тогда обещание окажется невыполненным, то есть муж сказал ей неправду. А если это так, то к каким выводам может она прийти, рассуждая логически? Не исключено, что муж сдержит слово и подарит ей браслет, нарушив обещание удивить ее неожиданным подарком. С другой стороны, он может сдержать свое слово, что подарок будет неожиданным, но нарушить второе обещание и вместо золотого браслета подарит ей, например, новый пылесос. Поскольку муж своим утверждением сам себе противоречит, у нее нет никаких разумных оснований предпочесть одну из этих возможностей другой, следовательно, у нее нет оснований надеяться на золотой браслет. Нетрудно догадаться, что будет дальше: когда. в день рождения муж преподнесет ей браслет, подарок мужа окажется для нее приятным сюрпризом, поскольку его нельзя предсказать заранее никакими логическими рассуждениями. Муж все время знал, что может сдержать слово и сдержит его. Жена же этого не знала до тех пор, пока обещанное событие не произошло. Утверждение мужа, которое еще вчера казалось ей чепухой и ввергло ее в запутаннейший клубок логических противоречий, сегодня вдруг стало абсолютно правильным и непротиворечивым благодаря появлению долгожданного золотого браслета.


6. Другие парадоксы

Приведенные парадоксы – это рассуждения, итог которых – противоречие. Но в логике есть и другие типы парадоксов. Они также указывают на какие-то затруднения и проблемы, но делают это в менее резкой и бескомпромиссной форме. Таковы, в частности, парадоксы, рассматриваемые далее.

Парадоксы неточных понятий

Большинство понятий не только естественного языка, но и языка науки являются неточными, или, как их еще называют, размытыми. Нередко это оказывается причиной непонимания, споров, а то и просто ведет к тупиковым ситуациям.

Если понятие неточное, граница области объектов, к которым оно приложимо, лишена резкости, размыта. Возьмем, к примеру, понятие «куча». Одно зерно (песчинка, камень и т.п.) – это еще не куча. Тысяча зерен – это уже, очевидно, куча. А три зерна? А десять? С прибавлением, какого по счету зерна образуется куча? Не очень ясно. Точно так же, как не ясно, с изъятием какого зерна куча исчезает. Неточными являются эмпирические характеристики «большой», «тяжелый», «узкий» и т.д. Неточны такие обычные понятия, как «мудрец», «лошадь», «дом» и т.п. Будет ли куча песка, из которой мы взяли одну песчинку считаться кучей? Да, будет. А если взять ещё одну песчинку? Будет. Так как при последовательном изъятии песчинок куча не перестаёт быть кучей, то и одна песчинка должна считаться кучей. Вывод явно парадоксальный и обескураживающий.

Нетрудно заметить, что рассуждение о невозможности образования кучи проводится с помощью хорошо известного метода математической индукции. Одно зерно не образует кучи. Если n зерен не образуют кучи, то n+1 зерно не образуют кучи. Следовательно, никакое число зерен не может образовать кучи.

Возможность этого и подобных ему доказательств, приводящих к нелепым заключениям, означает, что принцип математической индукции имеет ограниченную область приложения. Он не должен применяться в рассуждениях с неточными, расплывчатыми понятиями.

Хорошим примером того, что эти понятия способны приводить к неразрешимым спорам, может служить любопытный судебный процесс, состоявшийся в 1927 г. в США. Скульптор К. Бранкузи обратился в суд с требованием признать свои работы произведениями искусства. В числе работ, отправляемых в Нью-Йорк на выставку, была и скульптура «Птица», которая сейчас считается классикой абстрактного стиля. Она представляет собой модулированную колонну из полированной бронзы около полутора метров высоты, не имеющую никакого внешнего сходства с птицей. Таможенники категорически отказались признать абстрактные творения Бранкузи художественными произведениями. Они провели их по графе «Металлическая больничная утварь и предметы домашнего обихода» и наложили на них большую таможенную пошлину. Возмущенный Бранкузи подал в суд. Таможню поддержали художники – члены Национальной академии, отстаивавшие традиционные приемы в искусстве. Они выступали на процессе свидетелями защиты и категорически настаивали на том, что попытка выдать «Птицу» за произведение искусства – просто жульничество.

Этот конфликт рельефно подчеркивает трудность оперирования понятием «произведение искусства». Скульптура по традиции считается видом изобразительного искусства. Но степень подобия скульптурного изображения оригиналу может варьироваться в очень широких пределах. И в какой момент скульптурное изображение, все более удаляющееся от оригинала, перестает быть произведением искусства и становится «металлической утварью»? На этот вопрос так же трудно ответить, как на вопрос о том, где проходит граница между домом и его развалинами, между лошадью с хвостом и лошадью без хвоста и т.п. К слову сказать, модернисты вообще убеждены, что скульптура – это объект выразительной формы и она вовсе не обязана быть изображением.

Обращение с неточными понятиями требует, таким образом, известной осторожности. Не лучше ли тогда вообще отказаться от них? Немецкий философ Э. Гуссерль был склонен требовать от знания такой крайней строгости и точности, какая не встречается даже в математике. Биографы Гуссерля с иронией вспоминают в связи с этим случай, произошедший с ним в детстве. Ему был подарен перочинный ножик, и, решив сделать лезвие предельно острым, он точил его до тех пор, пока от лезвия ничего не осталось.

Более точные понятия во многих ситуациях предпочтительнее неточных. Вполне оправдано обычное стремление к уточнению используемых понятий. Но оно должно, конечно, иметь свои пределы. Даже в языке науки значительная часть понятий неточна. И это связано не с субъективными и случайными ошибками отдельных ученых, а с самой природой научного познания. В естественном языке неточных понятий подавляющее большинство; это говорит, помимо всего прочего, о его гибкости и скрытой силе. Тот, кто требует от всех понятий предельной точности, рискует вообще остаться без языка. «Лишите слова всякой двусмысленности, всякой неопределенности, – писал французский эстетик Ж. Жубер, – превратите их… в однозначные цифры – из речи уйдет игра, а вместе с нею – красноречие и поэзия: все, что есть подвижного и изменчивого в привязанностях души, не сможет найти своего выражения. Но что я говорю: лишите… Скажу больше. Лишите слова всякой неточности – и вы лишитесь даже аксиом».

Долгое время и логики, и математики не обращали внимания на трудности, связанные с размытыми понятиями и соответствующими им множествами. Вопрос ставился так: понятия должны быть точными, а все расплывчатое недостойно серьезного интереса. В последние десятилетия эта чрезмерно строгая установка потеряла, однако, привлекательность. Построены логические теории, специально учитывающие своеобразие рассуждений с неточными понятиями.

Активно развивается математическая теория так называемых размытых множеств, нечетко очерченных совокупностей объектов.

Анализ проблем неточности – это шаг на пути сближения логики с практикой обычного мышления. И можно предполагать, что он принесет еще многие интересные результаты

Парадоксы индуктивной логики

Нет, пожалуй, такого раздела логики, в котором не было бы своих собственных парадоксов. В индуктивной логике есть свои парадоксы, с которыми активно, но пока без особого успеха борются уже почти полвека. Особенно интересен парадокс подтверждения, открытый американским философом К. Гемпелем. Естественно считать, что общие положения, в частности научные законы, подтверждаются своими положительными примерами. Если рассматривается, скажем, высказывание «Все А есть В», то положительными его примерами будут объекты, обладающие свойствами А и В. В частности, подтверждающие примеры для высказывания «Все вороны черные» – это объекты, являющиеся и воронами, и черными. Данное высказывание равносильно, однако, высказыванию «Все предметы, не являющиеся черными, не вороны», и подтверждение последнего должно быть также подтверждением первого. Но «Все не черное не ворона» подтверждается каждым случаем не черного предмета, не являющегося вороной. Выходит, таким образом, что наблюдения «Корова белая», «Ботинки коричневые» и т.п. подтверждают высказывание «Все вороны черные».

Из невинных, казалось бы, посылок вытекает неожиданный парадоксальный результат.

В логике норм беспокойство вызывает целый ряд ее законов. Когда они формулируются в содержательных терминах, несоответствие их обычным представлениям о должном и запрещенном становится очевидным. Например, один из законов говорит, что из распоряжения «Отправьте письмо!» вытекает распоряжение «Отправьте письмо или сожгите его!».

Другой закон утверждает, что, если человек нарушил одну из своих обязанностей, он получает право делать все, что угодно. С такого рода «законами долженствования» наша логическая интуиция никак не хочет мириться.

В логике знания усиленно обсуждается парадокс логического всеведения. Он утверждает, что человек знает все логические следствия, вытекающие из принимаемых им положений. Например, если человеку известны пять постулатов геометрии Евклида, то, значит, он знает и всю эту геометрию, поскольку она вытекает из них. Но это не так. Человек может соглашаться с постулатами и вместе с тем не уметь доказать теорему Пифагора и потому сомневаться, что она вообще верна.

Вкратце всего вышеизложенного, ошибка состоит в следующем. Далеко не всегда можно менять местами части суждения. Например, из того, что «все евреи – люди» не следует, что «все люди – евреи».

Однако вот что получится, если мы позволим себе мыслить по правилам народной логики:

Одна рюмка водки не сделает меня пьяным. Следовательно, я всегда могу выпить ещё одну рюмочку.

Все скинхеды бреют голову, следовательно, каждый, кто бреет голову – скинхед;

– Все сектанты – верующие люди, следовательно, каждый верующий – сектант;

– Все наркоманы – преступники, следовательно, все преступники – наркоманы.

– Все развязки проектируются дебилами, следовательно, каждый дебил работает дорожным архитектором и т.п.


Заключение

На примере рассмотренных парадоксов мы ясно ощутили волшебную силу слова (или, точнее, если воспользоваться выражением Бурбаки, силу «вольности речи»). Она-то и делает парадоксы столь сложными и вместе с тем столь привлекательными.

«Лжец» затрагивает многие наиболее важные темы логики и семантики. Это и определение истины, и истолкование противоречия и доказательства, и целая серия важных различий: между предложением и выражаемой им мыслью, между употреблением выражения и его упоминанием, между смыслом имени и обозначаемым им объектом.

Аналогично обстоит дело и с другими логическими парадоксами. «Антиномии логики, – пишет фон Вригг, – озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения, сколько как неисчерпаемый сырой материал для размышления. Они важны, поскольку размышление о них затрагивает наиболее фундаментальные вопросы всей логики, а значит, и всего мышления».

Прошло более полувека с тех пор, как началось оживленное обсуждение парадоксов. Предпринятая ревизия логики так и не привела, однако, к недвусмысленному их разрешению. И вместе с тем такое состояние вряд ли кому кажется теперь невыносимым. С течением времени отношение к парадоксам стало более спокойным и даже более терпимым, чем в момент их обнаружения. Дело не только в том, что парадоксы сделались чем-то хотя и неприятным, но тем не менее привычным. И, разумеется, не в том, что с ними смирились. Они все еще остаются в центре внимания логиков, поиски их решений активно продолжаются. Ситуация изменилась прежде всего в том отношении, что парадоксы оказались, гак сказать, локализованными. Они обрели свое определенное, хотя и неспокойное место в широком спектре логических исследований. Стало ясно, что абсолютная строгость, какой она рисовалась в конце прошлого века и даже иногда в начале нынешнего, – это в принципе недостижимый идеал.

При написании своей работы я не ставила перед собой задачу решить или устранить какие-либо парадоксы, я даже намеренно пропускала решения некоторых из них (например, простая теория типов устраняет парадокс Рассела). Хотя многие парадоксы решимы, устранимы, а зачастую и вовсе надуманы. Но зачем, иллюзии так прекрасны.


Список использованной литературы

1. Ивин А.А., Логика. Электронная библиотека социалогического факультета МГУ им. М.В. Ломоносова

2. Байиф «Ж.К. Логические задачи. – М., 1983

3. Мартин Гарднер: Казнь врасплох и связанный с ней логический парадокс

4. Бузук Г.Л., Ивин А.А., Панов М.И. Наука убеждать: логика и риторика в вопросах и ответах. М., 1992

5. Уемов А.И. Логические ошибки: как они мешают правильно мыслить. М., 1958

6. Гжегорчик А. Популярная логика. М., 1979

7. Б. Кулик. Логические основы здравого смысла. http://www.ipme.ru/ipme/labs/msa/kulik/kulik.htm

8. Ивин А.А. По законам логики. – М., 1983




10-09-2015, 23:23

Страницы: 1 2 3
Разделы сайта