Эти работы выполняют для решения следующих задач: 1) изучение геологического строения районов месторождений. 2) поиски комплексов пород, с которыми связаны месторождения железных руд. 3) поиски залежей богатых руд среди вмещающих пород и их предварительное исследование. Кроме того, в последнее время получают развитие гравиметрические работы в подземных выработках. В области Курской магнитной аномалии развиты породы двух комплексов: 1) сильно метаморфизованные и сильно дислоцированные породы докембрийского основания с высокой плотностью от 2,6 до 3,8 г/см3 ; 2) осадочные породы палеозойского, мезозойского и кайнозойского возраста с плотностью от 1,6 до 2.4 г/см3 . Осадочные породы залегают на докембрийских трансгрессивно и почти горизонтально. Мощность осадочного комплекса изменяется от 35 м в центральной части бассейна до 550 м в южной.
Докембрийский комплекс пород разделяется на: а) нижний отдел, представленный биотитовыми гнейсами с плотностью 2,7 г/см3 , слюдяными и хлоритовыми сланцами (2,6), б) средний отдел — железистые кварциты с плотностью (3,3), амфиболовые (3,1), хлоритовые и биотитовые сланцы (2,68); в) верхний отдел — биотитовые (2,68) и известковистые сланцы, известняки (2,65) и доломиты (2,05). С железистыми кварцитами с содержанием железа 30—35% и плотностью 3,2—3.7 г/см3 среднего отдела связаны богатые железные руды с содержанием железа 50—60% и плотностью 3,3—1,0 г/см3 . Богатые руды приурочены к зоне древнего выветривания железистых кварцитов и представлены мартитовыми и сидерит-мартитовыми рудами. Они залегают на железистых кварцитах в виде горизонтальных пластообразных и линзовидных залежей с вертикальной мощностью от 40 до 350 м.
На Курской магнитной аномалии проводятся комплексные геофизические работы (магниторазведочные, гравиразведочные, сейсморазведочные, электроразведочные).На рис. 13 приведен профиль через Лебединское месторождение в Старооскольском районе и геолого-гравиметрический разрез. По кривой силы тяжести WZ в средней части профиля выделяется свита плотных пород. Падение близко к вертикальному. По кривой градиента силы тяжести удается расчленить эту свиту на отдельные пласты с плотностью от 2,7 до 3,9 г/см3 . Таких пластов выделено 23.
При расчленении свиты был применен способ интерпретации. Теоретическая кривая WXZT в основном совпадает с наблюденной кривой градиента.
В левой части разреза по профилю на участке 1,4 км выделяется глубокий минимум градиента силы тяжести до 200 этвеш, а на участке 2,5 км — максимум. В этом интервале выделена первая мощная пачка пластов с повышенной плотностью — от 3,2 до 3,9 г/см3 . Наиболее плотные пласты выделены на участке 1,4—1,6 км. В интервале от 2 до 3 км кривая градиента имеет сложный вид, и здесь выделено три пласта с плотностью 3,7—3,9 г/см3 . Бурение скважины на гравитационном репере 2,24 км над первым из этих трех пластов выявило залежь богатых железных руд. Залежь выделена по гравиметрическим данным в трех местах, там, где она залегает на головах железистых кварцитов. Кривая градиента силы тяжести имеет минимум на участке пункта 2,9 км и максимум на участке пункта 3,5 км. Здесь при интерпретации было выделено два пласта с повышенной плотностью до 3,9 г/см3 . Скважина, заданная на гравитационном репере 3,2 км над пластом с плотностью 3,7—3,9 г/см3 , вскрыла вторую залежь богатых железных руд с максимальной мощностью 49 м. Далее по профилю была выделена еще одна зона, в которой развиты породы с повышенной плотностью (3,7—3,9 г/см3 ) на участке 4 км. Над залежами богатых руд наблюдаются магнитные аномалии слабой интенсивности, поглощение упругих колебаний и осложнение волновой картины при сейсморазведке. Таким образом, гравитационный метод в таких условиях может с успехом решать задачи детального геологического картирования пород кристаллического фундамента под мощной толщей рыхлых отложений и задачи поисков залежей богатых железных руд (в комплексе с другими геофизическими методами).
3. ГЕОДЕЗИЧЕСКИЕ РАБОТЫ ПРИ ВАРИОМЕТРИЧЕСКОЙ СЪЁМКЕ
3.1 Поправки в наблюденные значения производных
Наблюденные значения вторых производных обусловлены непостоянством силы тяжести в объёме, занимаемом чувствительным элементом, которое в основном вызвано тремя причинами:
- изменением силы тяжести в нормальном гравитационном поле.
- влиянием рельефа
- влиянием внутренних аномальных масс.
Нормальные значения вторых производных находятся по формулам:
Uxz=8,11sin2φE
Uxy=0, Uyz=0 (3.1)
UΔ =10,25cos2 φE
Поправка за рельеф учитывает влияние масс, расположенных выше и ниже уровенной поверхности точки наблюдения, на вторые производные. Для вычисления поправки за рельеф вокруг пункта наблюдений необходимо выполнить нивелирование в радиусе 50 м и с точностью до 1 см.
Для уменьшения влияния рельефа при наблюдениях с вариометрами и градиентометрами прибор устанавливают на ровных площадках или при необходимости искуственно выравнивают рельеф вблизи пункта наблюдений.
Из-за сильного влияния близких масс положение коромысла фиксируют на фотографическую пластинку в отсутствие наблюдателя. Например: при нахождении человека массой m=80 кг на расстоянии r2 =1 м от вариометра, неоднородность поля притяжения составит 5 Э. (3.2)
G=2/3∙10-7 г-1 см3 с-2 ; M=80∙103 г
GM=5∙10-9 с-2 =5 Э (3.2)
3.2 Требования к точности координат гравиметрических пунктов.
Пространственные координаты гравиметрических пунктов нужны для вычисления аномалий силы тяжести и вторых производных, составления каталогов пунктов на карты и для геологической интерпретации результатов измерений. Установим требования к точности определения координат.
Для определения погрешностей плановых координат можно исходить из масштаба карты. Если графическая точность нанесения пункта на карту равна 0,2—0,4 мм, то для масштаба 1:10 000 погрешность плановых координат должна быть не больше 4 м.
Точность определения высотгравиметрических пунктов определяют на основании формулы (3.3). При погрешностях аномалии в 0,01 мГал высоты нужно определять с точностью 5 см. Точность привязки гравиметрических пунктов в зависимости от точности аномалий силы тяжести и масштаба карты установлена Инструкцией по гравиметрической разведке, 1975 г. (табл. 1).
Метод определения координат гравиметрических пунктов зависит от заданной точности их определения. Плановые координаты для составления мелкомасштабных карт определяют по топографическим картам и фотопланам более крупного масштаба. При детальных гравиметрических съемках масштаба 1 : 50 000 и крупнее координаты гравиметрических пунктов определяют теодолитными и мензульными ходами или радиогеодезическими методами.
Методика определения высот выбирается в зависимости от их точности. При съемках мелких масштабов высоты находят по топографическим картам. При детальных съемках точности 0,1 мГал и выше высоты определяют из геометрического нивелирования, при съемках точности 0,2—0,5 мГал — из геодезического, барометрического или гидростатического нивелирования, применяют стереофотограмметрические методы.
Как видно из табл. 1, точность определения плановых координат и высот при детальных съемках довольно высока. Топографо-геодезические работы по трудоемкости и объему работ значительно превосходят гравиметрические наблюдения. По времени топографо-геодезические работы должны опережать гравиметрические. [5]
ΔgБ = Δg--2πfσHγ = Δg – 0,0418σHγ (3.3)
Таблица 1
Масштаб карты |
Сечение изоаномал, мГал |
Точность аномалий Буге, мГал |
Средние квадратические погрешности, м |
Число лунктов на 1 км2 |
|
плановых координат |
высот |
||||
В равнинных районах |
|||||
1 : 1 000 000 |
5 |
1,5 |
200 |
5,0 |
0,04—0,1 |
1 : 500 000 |
|||||
1 : 200 000 |
2 |
0,8 |
100 |
2,5 |
0,01- 0,25 |
1 : 100 000 |
1 |
0,4 |
80 |
1,2 |
0,25—1,0 |
1 : 50 000 |
0,50; 0,25 |
0,1; 0,1 |
40 |
0,7; 0,35 |
2—50 |
1 : 25 000 |
0,25; 0,20 |
0,1; 0,08 |
20 |
0,35; 0,25 |
12— 80 |
1 : 10 000 |
0,20; 0,10 |
0,08; 0,04 |
4 |
0,20; 0,10 |
20—200 |
1 : 5 000 |
0,10; 0,05 |
0,04; 0,02 |
2 |
0,10; 0,05 |
50—500 |
В горных районах |
|||||
1 : 200 000 |
2 |
1,0 |
100 |
3,0 |
0,1— 0,25 |
1 : 100 000 |
1 |
0,5 |
100 |
1,80 |
0,25—1,0 |
1 : 50 000 |
1; 0,5 |
0,5; 0,25 |
50 |
1,6; 0,90 |
1—30 |
1 : 25 000 |
0,5; 0,25 |
0,25; 0,12 |
25 |
0,90; 0,45 |
4-60 |
1 : 10 000 |
0,20 |
0,10 |
5 |
0,25 |
20—100 |
1 : 5 000 |
.0,10 |
0,05 |
2 |
0,12 |
50—250 |
ЗАКЛЮЧЕНИЕ
Гравиразведочные работы на КМА были первыми работами такого рода в нашей стране. При проведении этих работ были заложены основы методики проведения гравиметрической съёмки для разведки железорудных месторождений. В выпускной работе отмечена роль акад. Михайлова А. А. в теории и практике гравиметрических и геодезических работ. Показано значение измерений вторых производных на современном уровне развития геодезии. Приведён пример влияния возмущающей массы на неоднородность поля притяжения.
СПИСОК ЛИТЕРАТУРЫ
1. Успенский Д. Г., Гравиразведка, Л., Недра, 1968.
2. Огородова Л. В., Шимбирёв Б. П., Юзефович А. П., Гравиметрия, М., Недра, 1978. 3. Торге В., Гравиметрия, М., Мир, 1999.
4. Гурштейн А. А., На рубежах познания вселенной, М., Наука, 1990 5. Юзефович А. П., Огородова Л. В., Гравиметрия, М., Недра, 1980. 6. Медунин А. Е., Развитие гравиметрии в России, М., Наука, 1967.
7. Сорокин Л. В., Курс гравиметрии и гравиразведки, Л., Гостоптехиздат, 1941.
29-04-2015, 00:28