ВВЕДЕНИЕ
На современном этапе формирования рыночной экономики страны основой функционирования и развития ее горной промышленности является открытый способ добычи полезных ископаемых. Ныне в России этим способом добывается около 90% железных руд, до 60% руд цветных металлов и угля [IV]. Разработка месторождений открытым способом обеспечивает значительно лучшие технико-экономические показатели, чем подземным.
Добыча полезных ископаемых открытым способом в нашей стране производится с давних времен. В настоящее время действуют предприятия большой производственной мощности.
Во второй половине 20 века в связи с истощением минерально-сырьевой базы России появилась устойчивая тенденция к освоению месторождений глубинного, нагорно-глубинного типа с вовлечением в разработку бедных руд, что предопределило значительное увеличение глубины карьеров, их размеров в плане и поставило горнодобывающие предприятия в более сложные условия.
По данным ИГД УрО РАН каждые 100 м роста глубины карьера сопровождаются снижением производительности буровых станков в среднем на 6-8%, экскаваторов на 8-12%, автосамосвалов на 16-22%, локомотивосоставов на 10-14%. Работа значительного числа а/с в карьере резко ухудшает экологическую обстановку. Решить ряд проблем можно внедрением на горных предприятиях новых решений в области техники и технологии.
Основным направлением в техническом перевооружении ОГР за рубежом в последнее десятилетие является широкое внедрение высокопроизводительного оборудования: буровых станков с диаметром долота до 450 мм, карьерных экскаваторов с ковшом вместимостью до 26 м3 , автосамосвалов грузоподъемностью до 310 м3 , различного вспомогательного оборудования, повышающего возможность основного и высвобождающего определенное число рабочих. В последние годы повышение технического уровня карьеров обеспечило рост сменной производительности труда по горной массе в среднем от 180 до 240 т (от 70 до 90 м3 ), а на ряде новых предприятий уровень сменной производительности труда достиг 95-100 м3 /чел.
Одним из перспективных направлений является внедрение перспективных циклично-поточной и поточной технологий, в частности, на разработке месторождений скального и полускального типа. В нашей стране при активном участии машиностроительных институтов и заводов были обоснованы технические требования и создан ряд опытных образцов оборудования для ЦПТ, испытанных на ряде горных предприятий (Гайский, Ново-Кроворожский, Центральный Криворожский, Качканарский ГОКи и Тургоякский карьер). Положительные результаты научно-исследовательских, конструкторских, и опытно-промышленных работ позволили запроектировать и впоследствии реализовать ЦПТ на большинстве рудных комбинатов бывшего СССР. Опыт применения ЦПТ показал, что своевременное внедрение ее на глубоких карьерах позволяет сократить затраты на транспортирование горной массы на 15-20%, повысить производительность труда, снизить объем горно-капитальных работ и количество вредных выбросов в атмосферу.
Бурное развитие горных работ стало возможным благодаря достижениям горной науки техники в основу которых положены труды академиков Н.В. Мельникова, В.В. Ржевского, профессоров Е.Ф. Шешко, А.И. Арсентьева, В.С. Хохрякова, П.И. Токмакова и др
1. КРАТКАЯ ГЕОЛОГИЧЕСКАЯ И ГОРНОТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ
В данном работе проектируется карьер с размерами по длине Lк = 1000 м, по ширине Вк = 460 м. По условию производственная мощность карьера по полезному ископаемому составляет Qпи = 1300 тыс. т/год, по горной массе
Ar = 2430 тыс. м3 /год, по вскрыше Vв = 2010 тыс. м3 /год.
Крепость полезного ископаемого составляет f=14. В соответствии с классификацией горных пород по шкале крепости проф. М.М. Протодьяконова, данное полезное ископаемое относится к категории очень крепких пород. Из литературы следует, что это полезное ископаемое – мрамор среднетрещеноватый. Его пределы прочности и плотность: σсж =125 МПа, σсдв =19,2 МПа, σраст =10,8 МПа, γ = 2,5 т/м3 .
Определяем показатель трудности разрушения по формуле:
ПР = 0,05[Ктр ·(σсж + σсдв + σраст. ) + γ·g]; (1) [II]
где: g – ускорение свободного падения, g = 9,8 м/с2 ;
Ктр – коэффициент, учитывающий трещиноватость, Ктр = 0,85
ПР = 0,05[0,85·(125 + 19,2 + 10,8) + 2,5·9,8] = 7,81;
По классификации акад. В.В. Ржевского полезное ископаемое относится по показателю трудности разрушения ко II классу и 8 категории.
Определяем показатель трудности бурения по формуле:
Пб = 0,07(σсж + σсдв + γ·g); (2) [II]
Пб = 0,07(125 + 19,2 + 2,5·9,8) = 11,8;
В соответствии с классификацией акад. В.В. Ржевского по показателю трудности бурения, порода относится к III классу – труднобуримая и 12 категории. Вскрышные породы с коэффициентом крепости f = 12 и показателем трудности бурения Пб = 10 относится ко II классу и 10 категории – средней трудности бурения.
Месторождение можно охарактеризовать:
- По форме: плитообразная залежь, т.к. вытянута преимущественно в двух направлениях;
- В зависимости от положения относительного господствующего уровня поверхности и глубины залегания: глубинного типа, т.к. мощность покрывающих пород Мп = 30 м;
- По углу падения: крутая залежь φ = 70º;
- По мощности: весьма мощное mпи = 35 м.
Пояснительная схема разработки залежи
2. РЕЖИМ РАБОТЫ КАРЬЕРА, ОБЩАЯ ОРГАНИЗАЦИЯ РАБОТ В КАРЬЕРЕ
В соответствии с нормами технологического проектирования для данных условий принимается круглогодичный режим работы карьера, при шестидневной рабочей неделе. Количество рабочих дней в году равно 300. Суточный режим работ трехсменный, продолжительность рабочей смены – 8 часов. Число рабочих смен в году – 900.
Определение границ карьерного поля.
По условию размеры карьера по поверхности составляют 1000´460 м.
Глубина карьера определяется по формуле:
, м;
где: киз – коэффициент извлечения запасов полезного ископаемого (0,95-0,97);
кгр – граничный коэффициент вскрыши;
м – горизонтальная мощность залежи;
м;
С учетом принятых углов наклона бортов карьера размеры карьера по дну составят.
Длина карьера по дну:
м;
Ширина карьера по дну:
м.
где: А – длина карьера по верху, А = 1000 м;
В – ширина карьера по верху, В = 460 м;
α,α´ - углы откосов нерабочего и рабочего бортов карьера;
Н – глубина карьера, м;
м;
м.
3. ПОДГОТОВКА ГОРНОЙ МАССЫ К ВЫЕМКЕ
Подготовку горных пород к выемке осуществляем буровзрывным способом.
3.1 Буровые работы
3.1.1 Выбор и обоснование бурового оборудования
Первоначально выбираем диаметр скважины. При показателях трудности бурения 10 и 11,8 выбираем dскв = 243 мм.
Буровые станки шарошечного бурения в настоящее время получили широкое распространение при бурении скважин диаметром 160-320 в породах с Пб > 5. По коэффициенту крепости выбираем станок СБШ-250МН.
Таблица 3.1 [IV] Техническая характеристика бурового станка СБШ-250МН
Показатели |
Значения |
Диаметр долота, мм Глубина бурения, м Ход подачи, м Угол бурения, градус Максимальная скорость подачи бурового инструмента, м/мин Осевое усилие подачи на забой скважины, тс Частота вращения долота, об/мин Крутящий момент, кгс·м Мощность вращателя, кВт Скорость подъема бурового става, м/мин Расход сжатого воздуха для продувки скважины, м3 /мин Скорость передвижения станка, км/ч Удельное давление гусениц на грунт, кгс/см2 Наибольший преодолеваемый подъем, градус Установленная мощность двигателей, кВт Показатели |
243 24 и 32 8 60—90 0,75 30 157; 81 600 75 9,0 20 0,6 1,0 12 322 Значения |
Размеры станка в рабочем положении, мм: длина ширина высота Масса станка, т |
7820 4690 14450 60 |
3.1.2 Технологические расчеты параметров буровых работ
Определяем техническую скорость бурения по формуле:
V б.ш. = 2,5·Р0 ·nв ·10-2 /(Пб ·dд 2 ), м/ч; (3.1) [I]
где: Р0 – усилие подачи, Р0 = 294,3 кН;
nв – частота вращения штанги nв = 16,43 с-1 ;
dд – диаметр долота - dд = 0,214 м;
V б.ш. = 2,5·294,3·16,43·0,01/(11,8·0,2432 ) = 14,7 м/ч;
Определяем сменную производительность станка по формуле:
, м/смену; (3.2) [II]
где: Кпр – коэффициент, учитывающий внутрисменные простои бурового станка, Кпр = 0,75÷0,85;
Тсм – продолжительность смены, Т = 8 ч;
Тпз – время на подготовительные и заключительные работы, Тпз = 0,5 ч;
Тр – регламентированный перерыв, Тр = 1 ч;
tв – вспомогательное удельное время бурения скважин, tв = 0,033÷0,066 ч/м;
tо – удельное основное время бурения скважин, ч/м:
tо = 1/V б , ч/м;
tо = 1/14,7 = 0,068 ч/м;
м/смену;
Выбранный буровой станок СБШ-250МН имеет ряд достоинств высокая скорость бурения, при работе станка не требуется доставка воды и тяжелого инструмента (долот), возможность регулировки осевого давления и числа оборотов в широких пределах, возможность бурения наклонных скважин. Также имеются и недостатки: большая масса станка, недостаточная стойкость шарошек и большой их расход.
Оценка взрываемости горных пород осуществляется по эталонному расходу (г/м3 ) взрывчатого вещества – аммонита 6ЖВ.
Определяем эталонный удельный расход ВВ по формуле:
qэ = 2*10-1 (σсж + σсдв + σраст +γ·g), г/м3 ; (3.3) [II]
где: σсж , σсдв , σраст – пределы прочности горной породы на сжатие, сдвижение и растяжение, МПа: σсж = 125 МПа; σсдв = 19,2 МПа; σраст = 10,8 МПа;
γ – плотность горной породы, γ = 2,5 т/м3 ;
g – ускорение свободного падения, g = 9,8 м/с2 ;
qэ = 2*10-1 (125 + 19,2 + 10,8 + 2,5·9,8) = 24,5 г/м3 ;
Определяем проектный удельный расход ВВ по формуле:
qп = qэ * Квв * Кд * Ктр * Ксз * Ку * Коп , г/м3 ; (3.4) [II]
где: Квв – переводной коэффициент по энергии взрыва от эталонного ВВ
(аммонит 6ЖВ или граммонит 79/21) к применяемому ВВ на карьере:
Квв = 1,2;
Кд – коэффициент, учитывающий требуемую кусковатость горной породы и степень их дробления:
Кд = 0,5/dср ;
где: dср – требуемый средневзвешенный размер куска взорванной породы, м:
dср = (0,1…0,2)*, м;
где: Е – емкость ковша применяемой модели экскаватора (ЭКГ-6,3УС), м3 : 6,3 м3 ;
dср = 0,2*= 0,36 м;
Кд = 0,5/0,36 = 1,47;
Ктр - коэффициент, учитывающий потери энергии взрыва, связанные с трещиноватостью породы:
Ктр = 1,2*l ср +0,2;
где: l ср – средний размер структурного блока в массиве: l ср = 0,7 м;
Ктр = 1,2*0,7 + 0,2 = 1,4;
Ксз - коэффициент, учитывающий степень сосредоточенности заряда в скважине: Ксз = 1,1;
Ку - коэффициент, учитывающий влияние объема взрываемой горной породы:
Ку = , при Ну ≤15 м;
где: Ну – высота уступа: Ну = 10 м;
Ку = = 1,2;
Коп – коэффициент, учитывающий число свободных поверхностей принимаем характерным для короткозамедленного многорядного взрывания:
Коп = 3,5;
qп = 24,5*1,2*1,47*1,4*1,1*1,2*5,5 = 232,9 г/м3 ;
Определяем глубину скважины по формуле:
Lс = Hу /sinβ + l п , м; (3.5) [II]
где: β – угол наклона скважины к горизонту: β = 90°;
l п – перебур скважины ниже отметки подошвы уступа:
l п = (10÷15)*dскв , м;
где: dскв – диаметр скважины, dскв = 0,243 м:
l п = 10*0,243 = 2,43 м;
Lс = 10/1 + 2 = 12 м;
Определяем длину забойки по формуле:
l заб = (20÷35)*dскв , м; (3.6)[II]
l заб = 25*0,243 = 6 м;
Определяем длину заряда по формуле:
l зар = Lc - l заб , м; (3.7)[II]
l зар = 12 – 6 = 6 м;
Определяем вместимость скважины по формуле:
ρ = π*dc 2 *Δ/4, кг/м; (3.8)[II]
где: Δ – плотность заряжания ВВ в скважине: при ручном заряжании Δ = 900…1000 кг/м3 ;
ρ = 3,14*0,2432 *1000/4 = 46,3 кг/м;
Определение линии наименьшего сопротивления:
Исходя из качественной проработки подошвы уступа, величина линии наименьшего сопротивления по подошве уступа определяется по формуле С.А. Давыдова:
м; (3.9)[II]
где: К m – коэффициент, учитывающий трещеноватость породы в массиве:
К m = 1,1;
= 8,2 м;
Исходя из условия достижения требуемой степени дробления породы, линия наименьшего сопротивления по подошве уступа составит:
м; (3.10)[II]
10,8 м
Исходя из условий обеспечения безопасного обуривания уступа (только при вертикальных скважинах), величина линии наименьшего сопротивления по подошве уступа определяется по формуле:
м; (3.11)[I]
5,7 м;
Бурение вертикальных скважин допускается, т.к. минимальное из значений W1 и W2 соответствует условию безопасности ведения буровых работ.
Определяем расстояние между скважинами в ряду по формуле:
а = m*М, м; (3.12)[I]
а = 1*8,2 = 8,2 м;
Определяем расстояние между рядами скважин при квадратной сетке по формуле:
b = а, м; (3.13)[I]
b = 8,2 м;
Определяем ширину развала взорванной массы при многорядном короткозамедленном взрывании по формуле:
Вм = кз *Во + (nр - 1)*b, м; (3.14)[II]
где: nр – число рядов скважин, nр =3;
кз – коэффициент, зависящий от интервала замедления, кз = 0,85;
Во – ширина развала взорванной горной массы при однорядном взрывании:
Во = кв *кb *Hу, м; (3.15)[II]
где: кв – коэффициент, учитывающий наклон скважин:
кв = 1 + 0,5*sin2(90-β);
кв = 1 + 0,5*0 = 1;
кb – коэффициент, учитывающий взрываемость породы, кb = 2÷2,5;
Во = 1*2*10 = 18,1 м;
Вм = 0,85*18,1 + (3-1)*8,2 = 31,8 м;
Определяем высоту развала по формуле:
Нр = (0,8÷1)* Hу , м; (3.16)[II]
Нр = 0,9*10 = 9 м;
Определяем средний выход взорванной массы по формуле:
, м/м3 ; (3.17)[II]
= 59,3 м/м3 ;
Определяем необходимое количество буровых станков по формуле:
N = П·К/(Qсм ·n·nгод ·V), ед.; (3.18)[IV]
где: П – производительность карьера по горной массе, П = 2430 тыс. м3 /год;
К – коэффициент резерва станков, К = 1,2÷1,25;
n – число смен работы станков в сутки, n = 3;
nгод – число рабочих дней бурового станка в году, nгод = 300;
V – выход горной массы с 1 м скважины:
V = а·b/Ну , м3 ;
V = 8,2·8,2/15 = 4,5 м3 ;
N = 2430·103 ·1,2/(44·3·300·4,5) = 2 станка;
Схема к расчету параметров буровзрывных работ
3.2 Определение параметров взрывных работ
Принимая во внимание крепость взрываемых пород, их обводненность и стоимость взрывчатых веществ наиболее рациональным будет применение взрывчатых веществ типа игданит (смесь гранулированной аммиачной селитры и дизельного топлива). Игданиты можно приготовить непосредственно на месте заряжания скважин.
Достоинства: безопасен в обращении, имеет низкую себестоимость, пригоден для механизированного заряжания.
Недостатки: возможность применения только в сухих скважинах, при длительном заряжании частичная потеря взрывчатых свойств.
Определим массу заряда скважины по формуле:
Q = qп ·а·W·Hу , кг; (3.19)[V]
Q = 0,2329·8,2·8,2·15 = 235 кг;
Применяем многорядное короткозамедленное взрывание, что обеспечит более высокие технико-экономические показатели взрывных работ, чем при мгновенном взрывании.
Выбираем схему с поперечным врубом. Она обеспечит сокращение ширины развала на 20-30%.
Определяем интервал замедления по формуле:
- при однорядном взрывании:
τ = К·W, мс; (3.20)[I]
где: К – коэффициент, зависящий от взрываемости пород, К = 3÷4;
τ = 3,5·8,2 = 28,7 мс;
- при многорядном взрывании интервал замедления увеличивается на 25%;
τ = 35 мс;
При взрывании используем пиротехнический замедлитель детонирующего шнура КЗДШ-69.
Схема прямого торцового вруба
3.2.2 Выбор способа дробления негабарита
Негабаритные куски при разработке плохо взорванного массива складываются на рабочей площадке экскаватора и подвергаются вторичному дроблению механическим, взрывным или электрофизическим способом.
Мы выбираем взрывной способ разрушения накладными зарядами. В шпур взрывчатое вещество с удельным расходом 2,5-3 кг/м3 располагают слоем 3-5 см и присыпают песком.
Схема взрывного дробления негабаритных кусков.
Таблица 3.2. Таблица основных параметров и показателей БВР
Наименование показателя |
Ед.изм. |
Значение |
Буровой станок |
СБШ-250МН |
|
Марка шарошечного долота |
6Н-243-ОК |
|
Диаметр скважины |
Мм |
243 |
Техническая скорость бурения |
м/ч |
14,7 |
Сменная производительность бурового станка |
м/смену |
44 |
Проектный удельный расход ВВ |
кг/м3 |
0,233 |
Глубина скважины |
М |
17 |
М |
2,43 |
|
29-04-2015, 00:34 Разделы сайта |