Установление режима работы ШСНУ с учетом влияния деформации штанг и труб для скважины №796 Серафимовского месторождения

МИНИСТРЕСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАФЕДРА РАЗРАБОТКИ И

ЭКСПЛУАТАЦИИ НЕФТЕГАЗОВЫХ

МЕСТОРОЖДЕНИЙ

УСТАНОВЛЕНИЕ РЕЖИМА РАБОТЫ ШСНУ С УЧЕТОМ

ВЛИЯНИЯ ДЕФОРМАЦИИ ШТАНГ И ТРУБ ДЛЯ СКВАЖИНЫ №796 СЕРАФИМОВСКОГО МЕСТОРОЖДЕНИЯ

КУРСОВАЯ РАБОТА

ПО КУРСУ “ЭКСПЛУАТАЦИЯ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ”

КЛУШ 210700.000. ПЗ

Группа

Студент

Консультант

Оценка защиты


Содержание

Введение

1. Геолого-промысловая характеристика Серафимовского месторождения

1.1 Общие сведения о районе

1.2 Орогидрография района

1.3 Характеристика нефтегазоносных пластов

1.4 Характеристика пластовых флюидов

1.4.1 Свойства нефти

1.4.2 Свойства пластовой воды

1.4.3 Свойства и состав газа

1.5 Состояние разработки месторождения

2. Условия работы ШСНУ в НГДУ “Октябрьскнефть”

2.1 Особенности оборудования ШСНУ

2.2 Анализ эффективности эксплуатации ШСНУ в условиях ООО НГДУ “Октябрьскнефть”

3. Теория подбора оборудования и режима работы ШСНУ

3.1 Расчет потерь хода плунжера и длины хода полированного штока

3.2 Нагрузки, действующие на штанги и трубы

4. Динамометрирование и результаты исследований

5. Выбор штанговой насосной установки и режима ее работы с учетом деформации штанг и труб

5.1 Исходные данные

5.2 Расчеты

6. Безопасность и обслуживание ШСНУ в ООО НГДУ ”Октябрьскнефть”

6.1 Основные опасности и вредности возникающие в процессе эксплуатации месторождений в ООО НГДУ “ Октябрьскнефть”

6.2 Техника безопасности при эксплуатации ШСНУ

6.3 Обеспечение электробезопасности

Список использованной литературы


Введение

Эксплуатация нефтяных скважин ШСНУ наиболее распространенный способ добычи нефти, охватывающий более 70 % действующего фонда скважин в ООО НГДУ “Октябрьскнефть”. Поэтому надежность эксплуатации этих установок в различных геолого-физических условиях скважины во многом будет определять показатели процессов добычи нефти.

Основными направлениями работ по повышению эффективности процессов добычи нефти с применением ШСНУ в ООО НГДУ “ОН” в последние годы являются:

1. совершенствование методов подбора оборудования к условиям конкретной скважины и режима его работы, а также поддержание оптимальных условий эксплуатации в течение всего межремонтного периода;

2. разработка новых и совершенствование существующих технических средств для эксплуатации ШСНУ;

3. разработка и применение специальных конструкций насосов для добычи высоковязких нефтей и водонефтяных эмульсий;

4. разработка и внедрение мероприятий по экономии электроэнергии при добыче нефти с помощью ШСНУ.

При проектировании эксплуатации скважины ШГН выбирают типоразмеры станка-качалки и электродвигателя, тип и диаметр скважинного насоса, конструкцию колонны подъемных труб и рассчитывают следующие параметры: глубину спуска насоса, режим откачки, т.е. длину хода и число качаний, конструкцию штанговой колонны.

Как показывает практика, межремонтный период работы скважин с установками ШСН сильно зависит от правильности выбора конструкций установок и режима их работы. Существующие многочисленные методики подбора оборудования и режима работы позволяют с разной степенью успешности решать вопросы повышения эффективности эксплуатации скважин. Значительные осложнения при работе скважин (в том числе деформация колонны штанг и НКТ) предъявляют особые требования к проектированию работы насосного оборудования /1/.

Современными штанговыми насосными установками можно добывать нефть из одного или двух пластов скважин глубиной до 3500 м. с дебитом жидкости от нескольких кубометров до нескольких сотен кубометров в сутки.

В данной работе установлен режим работы ШСНУ с учетом влияния деформации штанг и труб скважины №796 Серафимовского месторождения.

Необходимость данных расчетов связана с установлением оптимального режима работы ШСНУ для достижения максимального коэффициента подачи штангового глубинного насоса.


1. Геолого-промысловая характеристика Серафимовского месторождения

1.1 Общие сведения о районе

Серафимовское месторождение расположено на территории Туймазинского района республики Башкортостан и приурочено к восточным склонам Белебеевской возвышенности.

Крупнейшими населенными пунктами являются города Октябрьский и Туймазы, поселки Серафимовский, Субханкулово, станция Кандры.

Основными путями сообщения являются железная дорога Уфа-Ульяновск с веткой Уруссы - Октябрьский и автодороги, соединяющие города Октябрьский, Бугульма, Туймазы, Уфа, поселки Уруссу и Серафимовский, имеются внутрипромысловые дороги с гравийным и асфальтовым покрытием.

Наиболее крупными реками являются река Ик, Усень с ее притоками Самсык, Бишинды, Кармалы, Имеется карстовое озеро Кандры-Куль.

Речные долины делят территорию на отдельные гряды и блоки высотой до 460 м и крутизной скатов от нескольких до 10 - 15 градусов.

Климат района континентальный с холодной продолжительной зимой и жарким летом, с минимальной температурой минус 45о С в январе и максимальной плюс 36о С в июле. Годовая сумма атмосферных осадков колеблется от 273 до 348 мм. Мощность снегового покрова не превышает 0,6 м, глубина промерзания грунта 1 - 1,3 м. Преобладающими ветрами являются южные и юго-западные.

Район Серафимовского месторождения расположен в лесостепной части Башкирии. Древесная растительность занимает около 25% площади.

Основными полезными ископаемыми является нефть. Из других полезных ископаемых можно отметить строительные материалы: глина, гравий, известняк, которые употребляются для приготовления кирпича, глинистого раствора и др. /2/.

Рисунок 1 - Обзорная карта

1 - Мустафинское; 2 - Нурское; 3 - Амировское; 4 - Михайловское; 5 - Копей-Кубовское; 6 - Туймазинское; 8 - Субханкуловское; 9 - Серафимовское; 10 - Саннинское; 11 - Каргалинское; 12 - Ташлы-Кульское; 13 - Петропавловское; 14 - Солонцовское; 15 - Кальшалинское; 16 - Троицкое; 17 - Стахановское; 18 - Абдулловское; 19 - Суллинское; 20 - Ермекеевское; 21 - илькинское; 22 - Усень-Ивановское

1.2 Орогидрография района

Серафимовское месторождение расположено в западной части Башкирии на территории Туймазинского района.

В его строении принимают участие рифейские, девонские, каменноугольные, пермские и четвертичные отложения, Леонидовская, Серафимовская, Константиновская и Болтаевская структура.

Основным продуктивным горизонтом является песчаный пласт Д1 пашийского горизонта, средняя глубина залегания пласта - 1690 м /2/.

Основные свойства коллекторов приведены в таблице 1.

Таблица 1

Основные свойства коллекторов

Параметры Пределы измерений Среднее значение
Пористость, % 6 - 22 15,7
Проницаемость, мкм2 0,126
Водонасыщенность, % 20

Отметки ВНК колеблются в пределах 1740 - 1770 м. Первоначальный режим работы залежи - упруго-водонапорный, текущий - жеско-водонапорный. Начальное пластовое давление 17 МПа, текущее 15 - 17 МПа. Пластовая температура 38 о С.

1.3 Характеристика нефтегазоносных пластов

Промышленно-нефтеносными в нижнем карбоне являются песчаники угленосной толщи и приурочены к двум продуктивным пластам - верхнему и нижнему. Однако эксплуатация продуктивной угленосной толщи ведется единичными скважинами, т. к. нефть вязкая и с большим содержанием серы.

В пористых известняках турнейского яруса - повсеместно отмечены нефтепроявления в виде примазок нефти и запаха Н2 S.

В девонской системе нефтеносность установлена в отложениях фаменского, франского, живейского и эйфельского ярусов. Нефть, полученная из фаменских отложений, смолистая и сернистая.

Во франском ярусе нефтепроявления в виде битуминости известняков. Промышленная нефтеносность этого яруса установлена в его нижнем отделе.

В отложениях живейского яруса нефтеносной является терригенная толщина муллинского горизонта.

На Серафимовском месторождении выделяют три гидрогеологических комплексов - верхний, средний и нижний. В верхний комплекс входят поверхностные и грунтовые воды, воды татарского, казанского и уфимского ярусов. В средний водоносный комплекс включаются водоносные горизонты пористо-кавернозных и трещиноватых карбонатных отложений карбона /2/.

1.4 Характеристика пластовых флюидов

1.4.1 Свойства нефти

Свойства и состав пластовых и разгазированных нефтей приведены в таблицах 2 – 5 /2/.

Таблица 2

Свойства пластовых нефтей

Показатели Горизонты
Д-I Д-II
Давление насыщения, МПа 9,22 9,00
Удельный объем при Рнас 1,0082 1,0087
Коэффициент сжимаемости 9,83 10,2
Плотность, г/см 0,788 0,779
Вязкость , мПа с 2,43 1,78
Объемный коэффициент 1,15 1,16
Газосодержание, м3/м3 52,0 51,8

Таблица 3

Состав пластовой нефти

Компоненты Содержание
Д-I Д-II
N2 4,46 3,91
CH4 13,29 12,39
C2H6 5,3 7,01
C3H8 8,85 9,62
С4Н10 1,34 1,73
С5Н12 1,09 0,71
С6Н14+ высшее 9,4 8,08

Таблица 4

Свойства поверхностных нефтей

Показатели Горизонты
Д-I Д-II
Удельный вес, гр/см3 0,853 0,848
Кинематическая вязкость, мм2/с 15 15
Парафина, % 4,46 4,88
Асфальтенов, % 8,9 8,4
Селикогенов, % 8,0 10,9
Серы, % 1,5 1,13

Таблица 5

Состав поверхностных нефтей

Компоненты Содержание
Д-I Д-II
C2H6 0,34 0,58
C3H8 2,60 0,70
С4Н10 1,02 1,38
С5Н12 0,91 0,52
С6Н14+ высшее 13,47 12,81

1.4.2 Свойства пластовой воды

Пластовая вода залежей Серафимовской группы месторождений насыщена растворимыми минеральных солей. Воды различных пластов по химическому составу и степени минерализации колеблются от 756 до 827 мг.экв/л.

Из микроэлементов в водах обнаружены: J2 , NH4 , К, Fe.

Удельный вес воды колеблется от 1,1745 до 1,1943 г/см3 , в среднем удельный вес воды пласта Д1 равен 1,1847 г/см3 , пласта ДII - 1,1889 г/см3 /2/.

Вязкость девонской воды в пластовых условиях равна 1,6 сПз, а плотность 1,18 г/см3 . По классификации Сулина эти воды относятся к хлоркальциевому типу.

1.4.3 Свойства и состав газа

Добываемый газ является попутным. Все газы относятся к категории жирных, содержат достаточное количество тяжелых углеводородов, газы девонских нефтей не содержат сероводорода и углекислоты.

Выход газа на Серафимовском месторождении сравнительно высок и составляет 8,9 - 9,8 % . Количество азота в девонских пластах сравнительно небольшое 12,9 - 9,9 %. Количество метана изменяется от 33,9 до 34,9 % /2/.

Состав газа приведен в таблице 6.

Таблица 6

Состав газа, растворенного в нефти

Компоненты Содержание
Д-I Д-II
N2 12,86 9,9
CH4 34,9 33,94
C2H6 16,48 18,6
C3H8 22,7 21,8
С4Н10 1,6 2,42
nС5Н12 0,73 1,0
nС6Н14+ высшее 3,22 4,2

1.5 Состояние разработки месторождения

Серафимовское месторождение разрабатывается с 1949 г. Разработка основного пласта Д1 в первое время осуществлялась по проекту составленному в 1951 году совместно с ВНИИ и УфНИИ. Принятая для разбуривания сетка скважин 30 га/скв. В 1953 году был составлен уточненный проект разработки Серафимовского месторождения. По этому документу предусматривалось сплошное разбуривание залежи по сетке 20 га/скв.

Характеристика фонда скважин представлена в таблице 7.


Таблица 7

Характеристика фонда нагнетательных и добывающих скважин

Фонд добывающих скважин Действующий фонд (всего) 176
ЭЦН 4
ШГН 172
Бездействующие (всего) 6
В КРС и ожидании КРС 1
Нерентабельные 1
Прочие 4
Эксплуатационный фонд 182
В консервации 16
В том числе нерентабельные 15
Пьезометрические 22
Ожидающие ликвидации 2
Фонд добывающих скважин Ликвидированные после бурения 13
Ликвидированные эксплуатационные 9
В том числе наблюдательные 2
Контрольные (всего) 24
Итого в фонде добывающих 246
Фонд нагнетательных скважин Действующий фонд 39
В том числе внутриконтурные 36
Эксплуатационный фонд 39
Ликвидированные 3
Водозаборные 1
Итого в фонде нагнетательных 43
Всего пробуренных скважин 289
Средний дебит 1 добывающая скважина: 19,9
Нефть/жидкость, т/сут 6,1
1 ЭЦН: нефть/жидкость, т/сут 9/80,1
1 ШГН: нефть/жидкость, т/сут 1,7/4,4

Серафимовское месторождение включает залежи пласта Д1 , ДII , ДIII , ДIV , на долю которых приходится 79,9% балансовых запасов нефти месторождения. Максимальная годовая добыча нефти была достигнута в 1957 году /2/.

В течение длительного периода эксплуатации залежи преобладал фонтанный способ добычи нефти (до 1963 г), затем по мере обводнения продукции добывающих скважин, растет удельный вес добычи нефти механизированным способом.

С 1971 года залежь горизонта Д1 Серафимовского месторождения вступает в позднюю стадию разработки. Начинается остановка законтурных нагнетательных скважин, продолжается отключение обводненных добывающих скважин. Годовая добыча за период с 1971 по 1989 г.г. падает в 10 раз, а добыча жидкости всего в 1,3 раза.

В настоящее время, в процессе разработки залежей нефти, проводится регулирование объемов закачиваемой в пласт воды по отдельным участкам, осуществляется перенос (приближение) фронта нагнетания к зоне отбора жидкости, что способствует росту и стабилизации пластового давления в центральных частях залежей и более эффективному использованию пластовой энергии.

В целом по управлению достигнуты неплохие результаты. В частности, годовой темп отбора нефти составил 4,09 % от остаточных извлекаемых запасов, что практически равно средней величине НГДУ «Октябрьскнефть». Обводненность добываемой продукции является невысокой по сравнению с показателями обводненности других месторождений НГДУ «Октябрьскнефть». По вышеуказанным причинам действующий фонд добывающих скважин характеризуется низкими средними дебитами нефти и жидкости (1,8 т/сут). Нагнетательный фонд скважин характеризуется низкой проницаемостью, средняя величина которой на 2002 год по Серафимовскому месторождению 81 м3 /сут составила всего при средней по НГДУ «Октябрьскнефть» 92,6 м3 /сут.

Анализ основных показателей разработки Серафимовского месторождения позволил обосновать наиболее рациональное местоположение горизонтальных скважин, боковых стволов для бурения, выбор скважин для внедрения технологий по увеличению нефтеотдачи месторождения /2/.


2. Условия работы ШСНУ в НГДУ “Октябрьскнефть”

2.1 Особенности оборудования ШСНУ

В ООО НГДУ “Октябрьскнефть” применяются следующие виды насосов которые представлены в таблице 8. /3/

Таблица 8

Насосы применяемые в ЦДНГ-1

Тип насоса Условный размер, мм Длина плунжера, м. Количество, шт
НСВ1Б-28 28 4-7,2 1
НСВ1Б-29 29 4-7,2 20
НСВ1Б-32 32 4-7,2 247
НСН2Б-43 43 2,7 16
НСН2Б-44 44 2,7 33
НСН2Б-56 56 3,4; 7,1 4
НСН2Б-57 57 3,4; 7,1 3

Параметры штанговых скважинных насосов представлены в таблице 9.

Таблица 9

Параметры штанговых скважинных насосов

Насос

Условный

Размер, мм

Глубина спуска, м

Наружный диаметр, м

Длина, м
насоса плунжера ход плунжера
1 2 3 4 5 6 7
НСВ1

28

32

38

43

55

2500

2200

3500

1500

1200

48,2

48,2

59,7

59,7

72,2

4 – 7,2

4 – 7,2

4,1 – 9,7 4,1 – 9,7

4,9 – 9,3

1,2 – 1,8

1,2 – 1,8

1,2; 1,5; 1,8

1,2

1,2

1,2 – 3,5

1,2 – 3,5

1,2 – 6

1,2 – 6

1,8 – 6

НСВ2

32

38

43

55

3500

3500

3500

2500

48,2

59,7

59,7

72,9

6,4; 7,3

6,1; 9,7

6,1; 9,7

6,9; 9,9

1,8

1,8

1,8

1,8

2,5 – 3,5

2,5 – 6

2,5 – 6

3 – 6

НСН1

28

32

43

55

1200

1200

1200

1000

56

56

73

89

1,9; 2,9

1,9; 2,9

2,7

2,7

1,2

1,2

1,2

1,2

0,6; 0,9

0,6; 0,9

0,9

0,9

НСН2

32

43

55

68

93

1200

2200

1800

1600

800

56

73

89

107

133

3,4; 5,3

3,3; 7

3,4; 7,1

4,1; 6,8

4,3; 7

1,2

1,2; 1,5

1,2; 1,5

1,2

1,2

1,2; 3

1,2; 4,5

1,2; 4,5

1,8 – 4,5

1,8 – 4,5

Таблица 10

Техническая характеристика станков-качалок

Показатели

СК3-1,2-630 СК5-3-2500 СК10-3-5600 СКД3-1,5-710 СКД6-2,5-2800 СКД12-3,0-5600
Номинальная нагрузка (на устьевом штоке), кН

30

50

100

30

60

120

Номинальная длина хода устьевого штока, м

1,2

3,0

3,0

1,5

2,5

3,0

Номинальный крутящий момент (на выходном валу редуктора),

кН м

6,3

25

56

7,1

28

56

Число ходов балансира в минуту

5 - 15

5 - 15

5 - 12

5 - 15

5 - 14

5 - 12

Редуктор Ц2НШ-315 Ц2НШ-450 Ц2НШ- 560 Ц2НШ-315 Ц2НШ-450 Ц2НШ- 560

Габаритные размеры, мм, не более:

Длина

Ширина

Высота

4125

1350

3245

7380

1840

5195

7950

2246

5835

4050

1360

2785

6085

1880

4230

6900

2250

4910

Масса, кг 3787 9500 14120 3270 7620 12065

В последние годы стали использоваться штанговые насосы с безвтулочным цилиндром. Их преимуществом является упрощение конструкции и сборки насоса. У таких цилиндров предусматривается большая толщина стенки, чем у кожуха насосов с втулочным цилиндром, что обеспечивает повышенную прочность их резьбы по сравнению с резьбой кожухов. Конструкция насосов с безвтулочным цилиндром аналогично конструкции насосов с втулочным цилиндром /3/.

2.2 Анализ эффективности эксплуатации ШСНУ в условиях ООО НГДУ “Октябрьскнефть”

Наличие большого количества скважин, эксплуатируемых УСШН различных типоразмеров, широкий диапазон условий эксплуатации, различные характеристики пластов и добываемых из них жидкостей позволили получить широкий спектр данных используемых при подборе оборудования в ООО НГДУ “Октябрьскнефть”.

Анализ предусматривает группировку скважин по ряду общих признаков, которые приведены в таблице 11.

Таблица 11

Дебит

скважин по неф-

ти, т/сут

Коли-

чество

сква-

жин,

шт

Распределение насосов по

степени обводненности, %

Распределение насосов по глубине подвески насоса, м

Средняя глубина подвески,

м.

0-2 2-20 21-50 51-90 91-100

0-

700

701-

1000

1001-

1300

1301-

1500

0 –1 647 29 145 125 287 61 - 10 439 198 1261
1,1 – 5 507 18 214 142 128 5 2 18 385 102 1224
5,1 – 10 68 5 35 25 3 - - 8 53 7 1182
10,1 – 20 14 1 10 2 1 - - - 14 - 1140
20,1 - 30 1 - - - - - - - 1 - 1016
Итого 1237 53 404 295 414 66 2 36 892 307 1240

Таблица 12

Добыча жидкости различными видами насосов по ЦДНГ-1

Вид насоса Количество, шт. Добыча нефти, т. Добыча жидкости, м3
НСВ1Б-28 1 104 173,4
НСВ1Б-29 20 4161 8772,8
НСВ1Б-32 247 90987,2 248758,5
НСН2Б-43 16 10229,1 61825,5
НСН2Б-44 33 35715,3 113040,5
НСН2Б-56 4 6518,9 30687,4
НСН2Б-57 3 3987,6 27740
Итого 324 151703,1 490998,1

Наибольшее число штанговых насосов (62 %) имеет производительность по нефти до 1 т/сут. Около 95 % скважин эксплуатируется с содержанием воды до 90 %, 5 % - более 90 %. Основными глубинами подвесок насоса являются 1000-1300 м, (95 % скважин), наиболее распространенными являются насосы вставного типа – 82,7 %. Наземное оборудование скважин представлено в основном станками-качалками нормального ряда типа СКН5 – 31 %, СКД8 –15 % и 7СК8 – 29 %. Колонны штанг комплектуются двумя диаметрами штанг – 22 и

19 мм в соотношении 40 % и 60 %. Средняя величина погружения насосов под динамический уровень составляет более 300 м. что обеспечивает давление на приеме 2,5…3,0 МПа. Число ходов большинства станков-качалок поддерживается в пределах 5…6, длина хода полированного штока составляет 1,2 …2,5 м. /1/ . Основное применение в ЦДНГ-1 НГДУ “ОН” получили насосы вставного типа (НСВ) – 268 шт. На них ложится основная часть добычи нефти – 95252,2 т. из 151703,1 т. в год. Но если сравнить отдельно насосы, то из таблицы видно, что насосы типа НСН2Б-44 добывают в три раза меньше жидкости, чем НСВ1Б-32, но их в 7,5 раз меньше чем вставных. Это объясняется тем, что они применяются в мало обводненных скважинах, чем вставные и производительность невставных насосов выше чем вставных /3/.


3. Теория подбора оборудования и режима работы ШСНУ

3.1 Расчет потерь хода плунжера и длины хода полированного штока

Почти во всех скважинах фактическая производительность глубинно-насосных установок ниже расчетной, что обусловлено:

-упругим удлинением и сокращением штанг и труб;

-недостаточным заполнением жидкостью цилиндра насоса;

-изменение объемов нефти и воды;

-утечкой жидкости через клапаны насоса и неплотности в НКТ /4/.

При работе насоса колонны штанг и труб периодически подвергаются упругим деформациям от веса жидкости, действующей на плунжер. Кроме того, на колонну штанг действуют динамические нагрузки и силы трения, вследствие чего длина хода плунжера может существенно отличаться от длины хода полированного штока.

Силы, действующие на узлы ШСНУ, принято делить на статические и динамические по критерию динамического подобия (критерий Коши)

(3.1)

где a =4900-скорость звука в штанговой колонне, м/с; ω=2πn-частота вращения вала кривошипа, с-1 .

При μд ≤0,4 режим работы установки считается статическим, а при μд >0,4 режим работы – динамическим.

Для статических режимов силы инерции не оказывают практического влияния на длину хода плунжера, и длину хода полированного штока вычисляют по следующей формуле:

, (3.2)


где - сумма упругих деформаций штанг λш и труб λт , вызванных действием нагрузки от веса жидкости в НКТ. Они вычисляются по следующим формулам:

(3.3)

(3.4)

где εi – доля длины штанг с площадью поперечного сечения f ш i в общей длине штанговой колонны L н ; f т – площадь поперечного сечения по телу подъемных труб, м2 ; Е – модуль упругости материала штанг (для стали Е =2∙105 МПа).

Если колонна насосно-компрессорных труб заякорена у насоса, то λт =0.

Тогда суммарное упругое удлинение труб и штанг /4/:

где d - диаметр плунжера, м; ρж -плотность откачиваемой жидкости, кг/м;

g-ускорение свободного падения, м/с2 .

При динамическом режиме работы длину хода полированного штока можно определить по следующим формулам.

Формула АзНИПИнефти:

(3.5)

где т – коэффициент, учитывающий влияние силы инерции массы столба жидкости на упругие деформации штанг. Коэффициент т , рассчитанный А. Н. Адониным, имеет следующие значения:

Условный диаметр насоса, мм ……………………….………43 55 68 93

Коэффициент т ……………………… …………………….1 1,5 2,0 3,0

Формула (3.5) справедлива при μд ≤0,5 для двухступенчатой колонны штанг, учитывает вынужденные колебания последней и имеет вид:

(3.6)

где Здесь l ш1 , l ш2 – длина ступеней колонны штанг с площадями


29-04-2015, 00:55


Страницы: 1 2 3
Разделы сайта