Оборудование буровой установки

на преодоление сопротивлений в наземной системе. Далее буровой раствор проходит по бурильной колонне 7 (бу­рильным трубам, УБТ и забойному двигателю 9) к долоту 10. На этом пути давление раствора снижается вследствие затрат энергии на преодоление гидравлических сопротивлений.

Затем буровой раствор вследствие разности давлений внутри бурильных труб и на забое скважиныс большой скоростью выходит из насадок долота, очищая забой и долото от выбурен­ной породы. Оставшаяся часть энергии раствора затрачивается на подъем выбуренной породы и преодоление сопротивлений в затрубном кольцевом пространстве 8 . Поднятый на поверхность к устью 6 отработанный раствор проходит по растворопроводу 11 в блок очистки 12, где из него удаляются в амбар 15 частицы выбуренной породы, песок, ил, газ и другие примеси, поступает в резервуары 13 с устройствами 16 для восстановления его параметров и снова направляется в подпорные насосы.

Нагнетательная линия состоит из трубопровода высокого дав­ления, по которому раствор подается от насосов / к стояку 2 и гибкому рукаву 3, соединяющему стояк 2 с вертлюгом 4. Напор­ная линия оборудуется задвижками и контрольно-измерительной аппаратурой. Для работы в районах с холодным климатом пре­дусматривается система обогрева трубопроводов.

Сливная система оборудуется устройствами для очистки и приготовления бурового раствора, резервуарами, всасывающей линией, фильтрами, нагнетательными центробежными насосами, задвижками и емкостями для хранения раствора.

ВЕРТЛЮГИ И БУРОВЫЕ РУКАВА

НАЗНАЧЕНИЕ И СХЕМЫ

Вертлюг — промежуточное звено между поступательно пере­мещающимся талевым блоком с крюком, буровым рукавом и вращающейся бурильной колонной, которая при помощи замко­вой резьбы соединяется через ведущую трубу со стволом верт­люга. Для обеспечения подачи бурового раствора или газа пере­мещающийся вертлюг соединен с напорной линией при помощи гибкого бурового рукава, один конец которого крепится к отво­ду вертлюга, а второй — к стояку на высоте, несколько большей половины его длины.

На рис. VIII. 1 показана схема расположе­ния вертлюга в буровой при бурении.

Вертлюг обеспечивает возможность свободного вращения бу­рильной колонны при невращающихся корпусе и талевой системе. Он подвешен на ее крюке и выполняет функции сальника для подачи внутрь вращающейся колонны бурового раствора, закачиваемого насосами по гибкому рукаву.

На рис. VIII.2 показана принципиальная схема вертлюга для бурения глубоких скважин. Основная вращающаяся его де­таль — полый ствол 1, воспринимающий вес бурильной колонны. Ствол, смонтирован в корпусе 3 на радиальных 4 и 7 и упор­ных 5 и 6 подшипниках, снабжен фланцем, передающим вес колонны через главную опору 5 на корпус 3, подвешенный к крюку на штропе 12. Опоры ствола фиксируют его положение в корпусе, препятствуют осевым, вертикальным и радиальным перемещениям и обеспечивают устойчивое положение и лег­кость вращения.

Вес корпуса вертлюга со шлангом, осевые толчки и удары колонны снизу вверх воспринимаются вспомогательной опо­рой 6. Ствол вертлюга — ведомый элемент системы. При приня­том в бурении нормальном направлении вращения бурильной колонны (по часовой стрелке, если смотреть сверху на ротор) ствол и все детали, связанные с ним, во избежание самоотвин­чивания имеют левые резьбы. Штроп 12 крепится к корпусу на осях 16, смонтированных в приливах корпуса. Приливы имеют форму карманов, которые ограничивают угол поворота штропа ( — 40°) для установки его в положение, удобное для захвата крюком, когда вертлюг с ведущей трубой находится в шурфе.

К крышке корпуса 15 прикреплен отвод 13, к которому при­соединяется буровой рукав 14. Буровой раствор поступает из рукава через отвод в присоединенную к нему напорную тру­бу 9, из которой он попадает во внутренний канал ствола верт­люга. Зазор между корпусом напорного сальника 10 и напорной трубой 9 уплотнен сальником 11, обеспечивающим герметич­ность при больших рабочих давлениях бурового раствора.

Напорный сальник 11 во время роторного бурения эксплуа­тируется в тяжелых условиях, срок его службы (50—100 ч) во много раз меньше, чем остальных деталей вертлюга, поэтому он выполняется быстросменным. В верхней и нижней частях кор­пуса вертлюга для уплотнения зазора между корпусом и вра­щающимся стволом устанавливают самоуплотняющиеся ман­жетные сальники 2 и 8, которые предохраняют от вытекания масла из корпуса и попадания в него снаружи влаги и грязи.

В вертлюгах есть устройства для заливки, спуска масла и контроля его уровня, а также сапун для уравновешивания с атмосферным давлением паров внутри корпуса, создающего­ся при нагреве в процессе работы. Это устройство не пропуска­ет масло при транспортировке вертлюга в горизонтальном по­ложении.

Типоразмер вертлюга определяется динамической нагрузкой, которую он может воспринимать в процессе вращения бурильной колонны, допустимой статической нагрузкой и частотой вращения, предельным рабочим давлением прокачиваемого бу­рового раствора, массой и габаритными размерами. Каждый вертлюг имеет стандартную левую коническую замковую резьбу для присоединения к ведущей трубе двух-трех размеров. Кор­пус вертлюга выполняется обтекаемой формы для того, чтобы он не цеплялся за детали вышки при перемещениях. Вертлюги приспособлены к транспортировке любыми транспортными средствами без упаковки.

КОНСТРУКЦИИ ВЕРТЛЮГОВ

По конструкции вертлюги для бурения глубоких скважин, изготовляемые отечественными заводами, отличаются мало. Рассмотрим конструкцию вертлюга УВ-250МА (рис. VIII.3).Он состоит из литого стального корпуса 5 с двумя карманами для присоединения к нему штропа 11 при помощи пальцев. Внут­ренняя полость корпуса разделена по высоте горизонтальной перемычкой, служащей опорной поверхностью основной опоры ствола, усиленной для жесткости вертикальными ребрами. Эта перемычка имеет кольцевую площадку, на которую устанавли­вается основной опорный подшипник 4.

Над основной опорой в корпусе находятся вспомогательный упорный подшипник 6, воспринимающий усилия, которые воз­никают вдоль оси от ротора к вертлюгу, и верхний радиальный подшипник 7. Второй радиальный подшипник 3, центрирующий ствол вертлюга 1, расположен в нижней части корпуса. Ствол вертлюга / с вращающимися элементами подшипников 3, 4, 6 и 7 и верхним напорным сальником 9 составляют группу вра­щающихся деталей вертлюга.

Сверху корпус вертлюга имеет круглое отверстие. Это от­верстие закрывается крышкой с кронштейном 8, к которому крепится подвод 10. В крышке 8 установлено верхнее сальнико­вое уплотнение корпуса, а нижнее уплотнение 2 крепится к ниж­ней части корпуса. Этот сальник служит для предупреждения утечки масла из корпуса вертлюга в процессе работы.

Верхний радиальный 7 и упорный 6 подшипники малонагружены и смазываются консистентной смазкой, для чего в крышке предусмотрена пресс-масленка. Главная опора и нижний радиальный подшипник смазываются жидкой смазкой, которой наполнена масляная ванна корпуса. Жидкое масло служит не только для смазки, но и для отвода тепла, выделяющегося в подшипниках. Надо иметь в виду, что при прокачке через вертлюг бурового раствора с высокой температурой масло в ванне вертлюга нагревается и добавочное тепло трения приво­дит к повышению температуры выше допустимой (иногда более 100 °С).

Применение быстросъемного напорного сальника значитель­но упростило и ускорило его замену, а конструкция ствола ста­ла проще и меньшей длины. Практика эксплуатации показыва­ет, что применение большого числа манжет в сальнике не уве­личивает срок службы уплотнения вертлюга, так как происходит перегрев манжет и их разрушение вследствие плохого теплоотвода. Оптимальным является использование двух-трех ра­бочих манжет. В зависимости от конструкции уплотнение осу­ществляется либо первой, либо последней манжетой, при выхо­де из строя которой начинает работать вторая манжета и т. д.

Быстросъемное напорное уплотнение (рис. VIII.4), приме­няемое в вертлюге УВ-250МА, обеспечивает подачу в ствол вертлюга бурового раствора под давлением до 25 МПа. Рас­твор от подвода 4 вертлюга поступает через напорную трубу 9, расположенную в стволе 15 вертлюга. Эта труба жестко не за­креплена и является как бы плавающей. На ее верхнем конце установлена шпонка, входящая в паз кольца 7, неподвижно прикрепленного верхней нажимной гайкой 3 к втулке 5.

Зазоры между подводом 4, кольцом 7 и трубой 9 уплотнены торцовой 6 и радиальной 8 манжетами. Необходимое нажатие на уплотнения создается верхней нажимной гайкой 3 навинчи­ванием ее на втулку 5. Нижнее вращающееся уплотняющее устройство состоит из стакана 2, прижатого нижней нажимной гайкой / к торцу ствола 15 вертлюга. В стакане размещены четыре самоуплотняющиеся манжеты 10, разделенные между собой кольцами 12, создающими камеры, ограничивающие де­формацию манжет под давлением прокачиваемого раствора.

Для уменьшения трения и износа трубы 9 и манжет 10 в манжетные камеры периодически закачивают ручным насо­сом через пресс-масленку 11 консистентную смазку. Верхняя манжета служит для удержания смазки при закачке, а нижние три манжеты уплотняют зазоры между трубой 9, кольцами 12 и грундбуксой 13, нижний торец которой уплотнен торцовой манжетой 14. Необходимое нажатие на элементы сальника осу­ществляется нижней нажимной гайкой /.

Уплотнительные манжеты сальника изготовляют из маслостойких резин или резиноасбестовых композиций, или пластмасс полиуретановой группы. Напорные трубы изготовляют из низ­колегированных цементуемых сталей марок 12ХН2А, 20ХНЗАи др. Наружная поверхность труб подвергается термохимической обработке для создания слоя толщиной 1,5—3 мм твердостью 56—62 HRC. Наружная поверх­ность подвергается высокоточной механической обработке, поли­руется или выглаживается роли­ком для уменьшения шерохова­тости.

Рис. VIII .5. Нижнее уплотнение масляной ванны вертлюга

Нижнее уплотнение масляной ванны вертлюга (рис. VIII.5) служит для предохранения утеч­ки смазки при вращении верти­кально расположенного ствола вертлюга. Уплотняющее устрой­ство состоит из двух манжет 4, смонтированных в нижней части

крышки 9 корпуса вертлюга. Кольцо 8 при помощи болтов 7 нажимает на манжеты 4, которые прилегают к наружной по­верхности втулки 3, надетой на ствол 5 вертлюга. Втулка 3, упирающаяся в кольцо подшипника 1, крепится на стволе 5 гайкой 6 и уплотняется резиновым кольцом 2. В полость между манжетами 4 подается через пресс-масленку 10 консистентная смазка, предохраняющая вытекание масла из ванны. Втулка 3 предохраняет от износа поверхность ствола, а при износе ее меняют.

В нижней крышке корпуса предусмотрена отстойная зона, куда через отверстия в корпусе попадают с маслом продукты износа. С боку в нижней части крышки предусмотрено сливное отверстие, закрываемое пробкой, через которую периодически спускают масло из ванны вертлюга.

Ствол вертлюга — наиболее нагруженная деталь. На него действуют растягивающая сила от веса бурильной колонны, из­гибающий момент и внутреннее давление раствора. Нижний конец ствола имеет левую внутреннюю замковую резьбу по ГОСТ 5286—75, служащую для соединения через предохрани­тельный переводник с ведущей трубой. Стволы изготовляют из конструкционных низколегированных сталей марок 40Х, 40ХН, 38ХГН и др. Ствол подвергается закалке с отпуском до твердо­сти 280—320 НВ.

На опоры ствола вертлюга действуют в основном осевые на­грузки: главная опора воспринимает вес бурильной колонны, а радиальные подшипники центрируют подвешенный на крюке вертлюг и воспринимают нагрузки, создаваемые его весом и частью веса прикрепленного к нему гибкого шланга.

В качестве главной опоры в вертлюгах применяют упорные или радиально-упорные подшипники. В тяжело нагруженных вертлюгах для бурения глубоких скважин используют ролико­подшипники с коническими, бочкообразными и цилиндрически­ми роликами. Эти подшипники применяют при частоте враще­ния не более 100 об/мин, так как цилиндрические ролики рабо­тают с проскальзыванием, что приводит к их износу.

В вертлюгах для геологоразведочного бурения скважин не­большой глубины и при легких бурильных колоннах использу­ют радиально-упорные или радиальные шарикоподшипники, для вспомогательных опор вертлюгов обычно — упорные шарико­вые или конические роликоподшипники стандартных серий.

ПРИВОДЫ БУРОВЫХ УСТАНОВОК

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Приводом буровой установки называется совокупность дви­гателей и регулирующих их работу трансмиссий и устройств, преобразующих тепловую или электрическую энергию в механи­ческую, управляющих механической энергией и передающих ее исполнительному оборудованию — насосам, ротору, лебедке и др. Мощность привода (на входе в трансмиссию) характери­зует основные его потребительские и технические свойства и яв­ляется классификационным (главным) параметром.

В зависимости от используемого первичного источника энер­гии приводы делятся на автономные, не зависящие от системы энергоснабжения, и неавтономные, зависящие от системы энер­госнабжения, с питанием от промышленных электрических се­тей. К автономнымприводам относятся двигатели внут­реннего сгорания (ДВС) с механической, гидравлической или электропередачей. К неавтономнымприводам отно­сятся: электродвигатели постоянного тока, питаемые от промышленных сетей переменного тока через тиристорные выпря­мительные станции управления; электродвигатели переменного тока с гидравлической либо электродинамической трансмиссией или регулируемые тиристорными системами.

В соответствии с кинематикой установки привод может иметь три основных исполнения: индивидуальный, групповой и ком­бинированный или смешанный.

Индивидуальный привод — каждый исполнительный меха­низм (лебедка, насос или ротор) приводится от электродвига­телей или ДВС независимо друг от друга. Более широко этот вид привода распространен с электродвигателями. При его ис­пользовании достигается высокая маневренность в компоновке и размещении бурового оборудования на основаниях при мон­таже.

Групповой привод — несколько двигателей соединены сум­мирующей трансмиссией и приводят несколько исполнительных механизмов. Его применяют при двигателях внутреннего сго­рания,

Комбинированный привод — использование индивидуального и группового приводов в одной установке. Например, насосы приводятся от индивидуальных двигателей, а лебедка и ротор от общего двигателя. Во всех случаях характеристики привода должны наиболее полно удовлетворять требуемым характери­стикам исполнительных механизмов.

Потребителями энергии буровой установки являются: в процессе бурения — буровые насосы, ротор (при роторном бурении), устройства для приготовления и очистки бурового раствора от выбуренной породы; компрессор, водяной насос и др.;

при спуске и подъеме колонны труб — лебедка, компрессор, водяной насос и механизированный ключ.

Приводы также делятся на главные (приводы лебедки, насосов и ротора) и вспомогательные (приводы осталь­ных устройств и механизмов установки). Мощность, потребляе­мая вспомогательными устройствами, не превышает 10—15% мощности, потребляемой главным оборудованием.

Гибкость характеристики — способность силового привода автоматически или при участии оператора в процессе работы быстро приспосабливаться к изменениям нагрузок и частот вра­щения исполнительных механизмов. Гибкость характеристики зависит от коэффициента приспособляемости, диапазона регу­лирования частоты вращения валов силового привода и прие­мистости двигателя.

Коэффициент гибкости характеристики определяется отно­шением изменения частоты вращения к вызванному им откло­нению момента нагрузки. Он пропорционален передаточному отношению и обрат­но пропорционален коэффициенту перегрузки.

Приемистостью называется интенсивность осуществления переходных процессов, т. е. время, в течение которого двига­тель и силовой привод реагируют на изменение нагрузки и из­меняют частоту вращения.

Приспособляемость — свойство силового привода изменять крутящий момент и частоту вращения в зависимости от момен­та сопротивления. Собственная приспособляе­мость— свойство двигателя приспособляться к внешней на­грузке. Искусственная приспособляемость — свой­ство трансмиссий приспосабливать характеристику двигателя к изменению внешней нагрузки.

ТРАНСМИССИИ БУРОВЫХ УСТАНОВОК

ЭЛЕМЕНТЫ ТРАНСМИССИИ БУРОВЫХ УСТАНОВОК

В буровом оборудовании для осуществления кинематиче­ской связи между валами в механизмах, изменения скорости и направления вращения, преобразования крутящих моментов ис­пользуют цепные, клиноременные и зубчатые передачи. В уста­новках малой мощности для геологоразведочного бурения при небольших межосевых расстояниях между валами (до 0,5 м) ис­пользуют почти всегда зубчатые передачи, а при межосевых расстояниях более 0,5 м — клиноременные.В установках для эксплуатационного бурения для передачи «больших мощностей (500—2000 кВт и более) и межосевых рас­стояниях более 1 м применяют многорядные цепные и клиноременные передачи. Зубчатые передачи используют при межосе­вых расстояниях менее 1м — в редукторах насосов, реверсив­ных устройствах КПП, приводах роторов и др.

СИСТЕМЫ УПРАВЛЕНИЯ БУРОВЫМИ УСТАНОВКАМИ

ВИДЫ, ТРЕБОВАНИЯ И ХАРАКТЕРИСТИКИ

Буровая установка представляет собой сложный комплекс различных машин и механизмов, обеспечивающих выполнение разнообразных технологических операций при проводке сква­жин. Эффективность работы этого комплекса зависит от экс­плуатационных качеств, маневренности, четкости и надежности работы всех его элементов. Важную роль в комплексе играет система управления.

Системы управления обеспечивают:

пуск, остановку и регулировку работы двигателей;

включение и выключение трансмиссий, которые блокируют двигатели, приводящие буровые насоса, ротор или лебедку;

включение и выключение буровых насосов, лебедки, ротора, механизма подачи и тормозов (гидравлического, электрического и ленточного);изменение частоты вращения барабана лебедки, насосов и ротора; включение и выключение устройств для свинчивания и раз­винчивания бурильных труб;

управление работой ключей, клиньев и других механизмов при отвинчивании и установке бурильных свечей в магазин в процессе спуска и подъема колонны;

управление оборудованием для герметизации устья скважи­ны при бурении и проявлениях газа;

включение и выключение компрессора, вспомогательной ле­бедки или насоса, осветительной установки, устройств для очи­стки и приготовления бурового раствора и других вспомогатель­ных механизмов.

Для приведения в действие органов управления используют­ся различные виды энергии: в системах ручного механического управления —сила оператора; в пневматических, гидравличе­ских и электрических системах —энергия сжатого воздуха, жид­кости или электричества.

Система управления состоит из двух типов органов: управ­ляющих функциями главных и вспомогательных исполнитель­ных механизмов и аппаратуры, сигнализирующей оператору или регистрирующей результаты исполнения команды.

Система управления (рис. XI. 1) содержит пять основных органов:

1 — воспринимающий команду (кнопка, рукоятка, рычаг, пе­даль и др.), на который воздействует оператор — человек, про­граммирующее устройство или микропроцессор;

2 — промежуточный, передающий команду к исполнительным механизмам с использованием внешней энергии: тяги, трубопро­вода, электрокабеля и др.;

3 — исполнительный, воздействующий на механизм, выпол­няющий технологическую функцию: муфта сцепления, золотник, кран и др.;

4 — фиксирующий или ограничивающий исполнение коман­ды: защелка, концевой выключатель, стопор и др;

5 — обратная связь, информирующая оператора об исполне­нии команды или заданного режима работы: измерительный прибор, манометр, термометр, динамометр, световая или звуко­вая сигнализация.

В буровых установках применяется три вида систем управ­ления:

централизованная — расположенная у поста бурильщика и позволяющая ему управлять основными исполнительными меха­низмами: лебедкой, насосами, ротором, превенторами и др.;

индивидуальная или местная — расположенная вблизи того или иного агрегата;

смешанная-—позволяющая управлять агрегатом как с поста бурильщика, так и непосредственно около агрегата; например, ДВС с суммирующей трансмиссией могут управляться дизели­стом или бурильщиком и др.

Всеми устройствами управляют с постов бурильщика, дизе­листа или с пульта, расположенного вблизи того или иного агрегата


29-04-2015, 00:30


Страницы: 1 2 3
Разделы сайта