В результате отработки золотоносных россыпей материал россыпей подвергался неоднократному механическому воздействию (промывке, перемещению, гравитационной дифференциации, сегрегации и т. п.), а также влиянию гипергенных процессов, в результате чего первоначальное качество материала и морфологические параметры техногенных образований существенно изменились. После неоднократного перемыва при добыче золота произошла очистка песков от глинистой составляющей. Была установлена принципиальная возможность получения из техногенных образований Андрее-Юльевской россыпи концентратов кианита и кварцевого песка, с возможным попутным получением концентратов золота (Савичев, 2009).
2008 – 2009 г.г. – под руководством В. А. Коротеева для изучения условий локализации МГС, характеристики их свойств и т.п. в техногенных образованиях в качестве эталонного, был выбран Андрее-Юльевский участок техногенных россыпей, лицензия на поиски, разведку и добычу которого принадлежит ООО «Мингрупсил» (г.Пласт, Челябинской обл.). Заявлено о кианите как о новом виде сырья для ряда видов промышленного производства с использованием глинозёма ( Коротеев, 2009).
Глава 4. Методика исследований
Для получения объективных данных о строении, составе включений применялись различные методы исследования минерального вещества как в полевых, так и в лабораторных условиях.
4.1 Полевые исследования
В ходе полевых исследований были использованы методы геологического картирования и полевой документации, применяемые на стадии проведения поисковых и оценочных работ техногенных россыпей. Отобран геологический материал для дальнейших аналитических лабораторных исследований. Все пробы прошли пробоподготовку и предварительное обогащение.
В условиях полевой лаборатории проведён полуколичественный сокращенный минералогический анализ шлиховых проб на кианит (ситование, сокращение и определение массы кианита в пробах).
4.2. Лабораторные исследования
Лабораторные исследования проводились на Геологическом факультете Миасского филиала Южно-Уральского госуниверситета в г. Миассе (МГФ ЮУрГУ) и в Институте минералогии УрО РАН г. Миасс (ИМин УрО РАН).
1. Изучение анатомии кристаллов под бинокуляром, в ориентированных сечениях.
2. Рентгеноспектральный микроанализ.
Данный метод исследования применялся для определения включений в кианите и химического состава кианита по зонам. Для этого использовался электронно-зондовый микроанализатор JEOL SUPERPROBE 733. Полученные данные проанализрованы. Аналитик Е. И. Чурин.
3. Метод оптической микроскопии.
Метод оптической микроскопии применялся в целях диагностики рудных включений минералов в кианите по 12 пластинкам на микроскопе ПОЛАМ Р-312 в отраженном свете.
4. Гониометрия и вычерчивание кристалла кианита.
На столике Федорова был измерен монокристалл кианита с головкой, построена стереографическая проекция, затем по полученным параметрам был построен кристалл в программе Shape 7.0.
Глава 5. Геологическое строение Андрее-Юльевского участка
В контуре лицензионного участка находились южная часть Еленинской золотоносной россыпи и Андреевская золотоносная россыпь.
В геоморфологическом плане Андрее-Юльевский участок располагается в пределах Зауральского пенеплена Уральского горного сооружения и приурочен к Кочкарской эрозионно-структурной депрессии, предположительно являющейся речной долиной мезозойского возраста. Впоследствии палеодолина наследовалась миоцен-плиоценовой речной сетью, по отношению к которой современная речная сеть является секущей.
Участок работ приурочен к площади развития мраморов и мраморизованных известняков кучинской (R1kc) и карбонатной (С1k) толщ, зажатых между Борисовским и Пластовским гранитными массивами. В пределах участка развиты также сланцы еремкинской (PR1er) толщи, в пределах которой развиты кианитовые кварциты (месторождение «Борисовские сопки»).
Рыхлые образования, развитые в пределах Андрее-Юльевского участка, залегают на кристаллическом основании, сложенном метаморфизованными осадочными, вулканогенными и магматическими породами различного состава и возраста Арамильско-Сухтелинской структурно-формационной зоны, в состав которого входят: соколовская вулканогенно-осадочная (S1l3), уштаганская углисто-кремнистая (S1l3-n) и осадочно-вулканогенная (C1v1-2) толщи; а также породами метаморфического комплекса Кочкарского антиклинория, включающего семь толщ (снизу вверх): благодатскую (не стратифицирована), еремкинскую (PR3er), кучинскую (R2kc), светлинскую (R2sv), aлександровскую (Val), кукушкинскую (O?), карбонатную (C1v-n) (рис. 5).
Поскольку указанные выше толщи являлись основанием для россыпных и техногенных россыпных месторождений, их описание дано схематично и в пределах распространения этих месторождений.
Благодатская толща представлена интенсивно катаклазированными породами, сложенными в различных соотношениях диопсидом, амфиболом, полевым шпатом и карбонатом. Развита толща локально и образует изолированные тектонические блоки.
Еремкинская толща является самой древней в разрезе рассматриваемой территории и слагает крылья Санарской, Еремкинской, Борисовской брахиантиклинальных куполовидных структур, встречаясь в виде реликтов и «останцов» внутри последних. Мощность толщи более 1500 м. Нижняя толща сложена биотитовыми, биотит-силлиманитовыми, биотит-гранатовыми гнейсами с прослоями графитистых кварцитов, биотит-куммингтонит-плагиоклазовых, биотит-плагиоклазовых, гранат-биотит-плагиоклазовых, ставролит-биотит-плагиоклазовых с кордиеритом и силлиманитом кристаллических сланцев и мраморов. Верхняя толща сложена биотит-кварцевыми, ставролит-биотит-кварцевыми, ставролит-мусковит-кварцевыми, гранат-биотит-кварцевыми, кварц-биотит-плагиоклазовыми кристаллическими сланцами с прослоями мраморов и существенно плагиоклаз-амфиболовых пород. Биотитовые гнейсы распространены в нижней части разреза толщи. От кристаллических сланцев они отличаются относительно массивной, тонкополосчатой, гнейсовой текстурой с лепидогранобластовой структурой, нередко мигматизированные (Сначев и др., 1990).
Кучинская толща слагает мощные пачки мраморов в пределах Андрее-Юльевской депрессионной зоны. Контакты толщи обычно тектонические, резкие, с зонами срывов. Чрезвычайно характерной особенностью карбонатных пород кучинской толщи является полное отсутствие фаунистических остатков и наличие в них рубиновой минерализации (Кисин, 1991). Мраморы слагают мощные однородные пачки белых, светло-серых, желтоватых, голубоватых разностей, преимущественно кальцитового состава. Мощность толщи около 700 м.
Светлинская толща развита в западной части территории и в пределах Андрее-Юльевской россыпи. Залегает непосредственно на кучинских мраморах (рис. 5). В разрезе толщи выделяются две пачки пород. Нижняя, терригенно-карбонатная пачка сложена метапесчаниками, которые кверху постепенно сменяются карбонат-биотитовыми, карбонат-амфиболовыми плагиосланцами бластоалевролитовой и бластопсаммитовой структур, чередующиеся с прослоями мраморов. Кроме того, в составе пачки присутствуют прослои серых и темно-серых графитистых кварцитов, двуслюдяных и мусковитовых плагиосланцев. Верхняя, терригенная, пачка представлена преимущественно биотитовыми, карбонат-биотитовыми плагиосланцами и развивающимися по ним биотит-кварц-серицитовыми метасоматитами (Сначев и др., 1990).
Александровская толща прослеживается в западной части площади, в зоне сочленения Кочкарского антиклинория с Сухтелинским синклинорием, слагая Александровскую зону смятий. Суммарная мощность отложений толщи более 1500 м.
В составе александровской толщи принимают участие регионально метаморфизованные осадочные, вулканогенно-осадочные и вулканогенные породы. В разрезе толщи преобладают биотитовые, серицит-биотитовые, хлоритовые, биотит-актинолитовые, хлорит-актинолитовые сланцы, обычно тонко переслаивающиеся с графитистыми и слюдисто-графитистыми кварцитами.
Кукушкинская толща имеет малую площадь распространения, протягиваясь в виде узкой полосы в северо-западной части Андрее-Юльевского участка, и представлена в основном терригенными отложениями. Суммарная мощность равна 500-700 м. В сложении кукушкинской толщи участвуют метагравелиты, метапесчаники, метаалевролиты и метапелиты. В качестве вероятных источников сноса при формировании отложений кукушкинской толщи могут рассматриваться гранитоиды борисовского комплекса (Тепловой…, 1989).
Рис. 5. Геологическое строение Кочкарской площади (По Болтыров и др, 1973; Сначев и др., 1990):
1-осадочно-вулканогенные образования Сухтелинского антиклинория; 2 – венд, александровская толща; 3 – венд-ордовик, кукушкинская толща; 4 – верхний рифей, светлинская толща; 5 – средний рифей, кучинская толща; 6 – протерозой, еремкинская толща; 7 – образования благодатской толщи; 8 – метаультрамафиты; 9 – диориты, габбро-диориты, габбро; 10 – граниты; 11 – плагио-мигматиты; 12 – мигматиты гранитные; 13 – карбонатный меланж; 14 тектониты нерасчлененные; 15 – стратигра-фиические и интрузивные границы;16 – тектонические нарушения. Цифры в кружочках – гранитные массивы: 1 – Ключевской; 2 – Варламовский; 3 – Котликский; 4 – Еремкинский; 5 – Борисовский; 6 – Санарский; 7 – Пластовский (Андреевский).Выделен контур лицензионного участка.
Карбонатная толща мощностью около 400 м развита только в юго-восточной части исследованной площади в виде небольшой полосы, слагая мульдообразную синклинальную структуру, вытянутую в субмеридиональном направлении.
Толща состоит из серых, темно-серых до черного цвета мраморизованных рифогенных известняков. Мраморизованные известняки содержат богатую фауну брахиопод, стеблей криноидей, фораминифер, кораллов, которые свидетельствуют о раннекаменноугольном возрасте отложений карбонатной толщи.
В районе повсеместно распространены площадные и линейные коры выветривания, по карбонатным породам развит карст.
Кайнозойские образования представлены разновозрастными аллювиально-пролювиальными отложениями (от раннего палеоцена до позднего плиоцена) и четвертичными отложениями различного генезиса. Первичные концентрации кианита приурочены в основном к песчано-глинистым отложениям позднего олигоцена (наурзумская свита), раннего и среднего миоцена (аральская свита).
В гидрогеологическом отношении в районе работ развит водоносный объединенный горизонт порово-трещинно-карстовых вод палеозойского фундамента и мезозойских кор выветривания. Подземные воды, приуроченные к песчаным прослоям в разрезе кайнозоя, имеют в пределах россыпей повсеместное распространение. По данным бурения уровень грунтовых вод находится на глубинах 2-8 м. (Сначев и др., 1990).
Существуют различные теории происхождения кианита.
В иностранной литературе относившейся к дистеновым месторождениям Северной Америки и Индии, имеются сторонники теории образования дистена путем метаморфизма бокситовых глин (Дюни, месторождения Северной Индии), но господствующей является теория происхождения дистена путем пневматолитического и гидротермального метаморфизма, сопровождавшего интрузии кислой магмы (гранита). Сторонниками этой теории являются А. Х. Фесслер, Мак-Когей, Дж. Л. Стопей и др (Игумнов, 1935).
По наблюдениям А. Н. Игумнова Борисовское месторождение кианита образовалось в результате воздействия на кварцево-слюдяные сланцы продуктов остаточной гранитной магмы. За эту точку зрения прежде всего говорят нахождение залежей дистена в центральной осевой зоне метаморфической полосы Борисовских сопок, то есть там, где имеют развитие различные образования последних дериватов гранитной магмы. По периферии сланцевой полосы, и в контакте ее с гранитами – дистена не наблюдается.
Форма залежей дистенового сланца (рис. 6) жилообразная и линзообразная также указывают на более позднее происхождение этих образований. Факторами, заслуживающими серьезного внимания, являются нахождение кианита в жилах с кварцем (рис. 7 б) и нахождение минералов сопутствующих дистену: рутила, турмалина и монацита (Игумнов, 1935).
Рис. 6. Кианит в слюдяном сланце (Фото А. А. Евсеев)
Рис. 7. а - кианитовый кварцит ( Фото Кульмухаметовой М. Г.); б – кианит в кварцевой жиле (Коротеев, 2008)
По Кейльману Г. А., кианит метасоматический развивается в тектонически ослабленных зонах с образованием отчетливой метасоматической зональности, которая не зависит от состава и уровня метаморфизма исходных пород. Во внешней зоне колонки обычно развиты метасоматиты мусковит-кварцевого состава, которые постепенно переходят в мусковит-кианитовые (силлиманитовые), а затем в кианитовые кварциты (рис. 7 а) нередко с силлиманитом. Во внутренней (центральной) зоне нередко образуются мономинеральные кварциты, сложенные грануломорфным кварцем. Иногда центральная зона колонки сложена монокварцевым метасоматитом.
Также имеются данные о том, что серицитовые породы с повышенными содержаниеми монацита обнаружены среди допалеозойских кианитовых кварцитов, обрамляющих Борисовский гранитный массив (Игумнов, Кожевников, 1935). Монацит-содержащие породы сложены (об.%) серицитом 75-100, синим кианитом 0-25, кварцем 0-5, монацитом 2-10, ванадийсодержащим рутилом 2-8. Детальной разведкой установлено, что проявление редкоземельных серицитолитов характеризуется незначительными размерами – 3-3.5Ч2.0 м. Эти данные позволили сделать предположение о том, что изученное тело является трубкой (Белковский, Нестеров, 1999).
Глава 6. КИАНИТОВАЯ МИНЕРАЛИЗАЦИЯ РАЙОНА АНДРЕЕ ЮЛЬЕВСКОГО УЧАСТКА
Рыхлые образования, развитые в пределах Андрее-Юльевского участка, залегают на метаморфизованных осадочных, вулканогенных и магматических породах различного состава и возраста. Достаточно широким распространением среди них пользуются карбонатные породы кучинской толщи.
В районе повсеместно распространены площадные и линейные коры выветривания, по карбонатным породам развит карст.
Кайнозойские образования представлены разновозрастными аллювиально -пролювиальными отложениями (от раннего палеоцена до позднего плиоцена) и четвертичными отложениями различного генезиса. Первичные концентрации кианита и золота приурочены в основном к песчано-глинистым отложениям позднего олигоцена (наурзумская свита), раннего и среднего миоцена (аральская свита).
Учитывая техногенный характер образования полезных компонентов Андрее-Юльевского участка, сведения о составе и строении техногенных месторождений определяются геолого-промышленным типом исходного природного сырья. Кианит – основной товарный продукт техногенных образований, в том числе и на исследования коренных источников кианита, входящего в состав аллювиальных россыпей.
В контуре участка находятся южная часть Еленинской золотоносной россыпи и Андреевская золотоносная россыпь. Россыпи отрабатывались в 1973-1978 гг. Миасским прииском, в 1982-1987 гг. старательской артелью «Нагорная» и в 1988-1997 гг старательской артелью «Степная» (Савичев, 2008).
Техногенные пески в районе прииска неоднократно перемывались, поэтому почти лишены глинистого материала. Их минералогический состав: кварц – 90-95 мас.%, кианит – 4,9 % (среднее содержание по материалам ранних исследований Г. Г. Лепезина), на долю остальных минералов (гематит, магнетит, золото, рутил и др.) приходится 3-5 %.
По последней отработке россыпей была установлена принципиальная возможность получения концентратов кианита (рис. 8) и кварцевого песка. После неоднократного перемыва при добыче золота произошло естественное обогащение песков кварцевым материалом, кианитом и другими полезными компонентами. По результатам проведенных ранее работ, ориентировочное среднее содержание кианита в песках Еленинской россыпи составляет 3,3 %, Андреевской – около 2 %. Основная масса кианита (до 80 %) сосредоточена в классах песков крупностью от 1 до 20 мм. Преобладающим компонентом техногенных песков после отмывки глинистой составляющей является кварц (91,2-94,6%), который может оцениваться как попутное полезное ископаемое в качестве формовочного, стекольного и строительного песка. Из других потенциально полезных компонентов в рыхлых отложениях присутствует рутил (свыше 2 г/м3), ильменит (свыше 5 г/м3), магнетит (свыше 10 г/м3), монацит и др.
Концентраты кианита из Еленинской россыпи были изучены в ЦНИИолово (г. Новосибирск). Их химический состав характеризуется следующими средними содержаниями (в %): SiO2 -37,78-43,86; Al2O3 - 49.13 -54.94; TiO2 -0,66; Fe2O3 4,04-4,17; MnO 0,03-0,50; MgO 0,01; CaO – 0,16-0,30; Na2O - 0,3; K2O – 0,06-0,10 (Лепезин, 2003).
Глава 7. Технология обогащения и промышленное значение кианитовых руд Андрее-Юльевского участка
Как уже говорилось, Андрее-Юльевские пески неоднократно перемывались, и поэтому почти не содержат глинистого материала.
Фракция +7 мм, на которые приходится в среднем 7%, практически без кианита. Наиболее богатые кианитом фракции 7-5, 5-3, 3-2, 2-1 (соответственно 13,1, 17,1, 18,0 и 9,4 мас.%) (рис. 8).
Рис. 8. Гранулометрический состав кианита
Доля этих фракций относительно общей горной массы составляет 27%. На фракции менее 1 приходится более 66% горной массы: кварц = 90-95%, кианит = 2-5%, гематит = 3-5%.
Технология обогащения сводится к следующему. Пески рассеиваются на три фракции: 1) +7; 2) -7+1; 3) -1.
Рис. 9. Кианитовый концентрат полученный разработаны предварительные схемы при обогащении Андрее - Юльевских песков обогащения техногенных образований
Первая группа фракций без кианита, засорена лимонитом и ее можно выбрасывать или использовать на отсыпку дорог. Из второй группы фракций выделяется кианит (рис. 9), хвосты обогащаются кварцем. В третьей группе фракций преобладающим является кварц. При его обогащении кианит накапливается в хвостах, которые могут идти на повторный передел. Следует иметь в виду, что здесь же будут концентрироваться золото и рутил.
На основе полученных данных (2009 г.) о минералогии и гранулометрическом составе техногенных образований Еленинской россыпи были
Ресурсы кианита обследованного участка Еленинской техногенной площади в пределах выделенных техногенных отвалов, по данным Г. Г. Лепезина, составляют 103,5 тыс.т. Площадь отвалов составила 1377569 м2. Площадная продуктивность составит 75,1 кг/м2 (Лепезин, 2003).
Таким образом, простое рассеивание (грохочение) позволяет на начальной стадии обогатительного процесса сократить объем горной массы в 3–4 раза, увеличив при этом во столько же раз количество кианита в ней.
В Восточном институте огнеупоров (ВОСТИО (г. Екатеринбург)) под руководством крупнейшего специалиста д.г.м.н. В. А. Перепелицина были проведены огнеупорные исследования кианитовых концентратов. Получены огнеупорные характеристики концентратов и приготовленных из них изделий, разработана технология производства высокоглиноземистых огнеупоров. На основании приведенных исследований сделано следующее заключение: кианитовые концентраты Андрее-Юльевских россыпей являются перспективным минеральным сырьем для производства качественных муллито-кремнеземистых огнеупорных материалов и изделий.
Рис. 10. Принципиальная технологическая схема обогащения кианитовых песков
Опыты с тем же концентратом проводились и на Нижнетагильском металлургическом комбинате под руководством главного огнеупорщика Э. В. Вислогузовой. Итоговые выводы: концентрат может быть использован как составная часть в различных алюмосиликатных массах и бетонах непосредственно на металлургических производствах, например для желобных масс, сталеразливочных и промежуточных ковшей и т.д., а также пригоден для получения плавленых муллит-корундового состава материалов.
Электротермическим методом из кианита получают кремне-алюминиевый сплав - силумин, широко используемый в автомобиле- и самолетостроении.
С точки зрения освоения и последующей эксплуатации наиболее выгодное положение на Урале занимают коренные месторождения и проявления: М-Брусянское, Абрамовское, Сосновское, Косулинское, Карабашское (Уфимское), Мало-Каслинское, Борисовское, Михайловское. Они находятся в регионе с развитой инфраструктурой и недалеко от железных дорог. Практически все месторождения могут быть отработаны открытым способом. Руды легко обогащаются. Содержание глинозема в кианитовых концентратах достигает 62 %.
Разведанные запасы минералов группы силлиманита в нашей стране в целом в пересчете на конечный продукт – алюминий, превышают 400 млн. тонн. Если его производить в количестве 3,5 млн. тонн в год, как это делается сейчас, то руд хватит более чем на 120 лет.
Руды имеют предельно простой состав (кианит с кварцем в сумме составляют более 90%) и на их базе можно создать безотходное производство концентратов с выделением в качестве товарных продуктов кианита (на силумин, алюминий, огнеупоры, керамику и т.д.), кварца (в качестве формовочного и стекольного песка), мусковита и рутила.
В настоящее время у нас функционируют 11 алюминиевых заводов, из них 5 находятся в Сибири, 2 на Урале и 4 на западе и северо-западе страны. В сумме они производят порядка 3.5 млн. тонн алюминия в год, но собственным глиноземом обеспечены на 35-40% (Лепезин, 2003).
Глава 8. Особенности морфологии и состава кианита Андрее Юльевского участка и Борисовского месторождения
Для изучения кристаллов кианита, сравнения состава и составления типизации были выбраны кристаллы кианита, которые максимально отличаются по внешнему виду (по цвету, форме кристаллов, содержанию включений), и которые наиболее распространены в россыпях (образцы № 1, 4, 5, 6,
29-04-2015, 00:31