Тогда притекающая в скважину нефть будет примешиваться к раствору в небольшой концентрации, облегчение раствора будет незначительным, а выброс его невозможен.
2. Следующим промысловым примером, иллюстрирующим проявление капиллярных сил в нефтенасыщенной пористой среде, является промывка керна фильтратом глинистого раствора.
Широкий опыт исследования нефтенасыщенности кернов, извлеченных из различных пластов, свидетельствует о том, что происходит промывка их фильтратом глинистого раствора, поскольку содержание нефти в кернах существенно ниже, а воды определенно выше, чем в пластовых условиях. Причем вода в кернах имеет явные признаки фильтрата промывочного раствора.
Обычно факт промывки кернов объясняется опережающим оттеснением нефти фильтратом раствора из-под долота, т.е. предполагается, что это процесс локального заводнения за счет гидростатического перепада давления. Однако такое представление недостаточно обосновано и многие фактические данные противоречат ему. В качестве примера можно рассмотреть результаты анализа кернов пласта Д1 из скв.1283 Туймазинского месторождения, проведенного в лаборатории физики пласта ВНИИ (Ф.И. Котяхов, Ю.С. Мельникова и др.). Эти результаты (табл.1) особенно показательны потому, что исследование керна намечалось и проводилось по специальному плану и был обеспечен высокий вынос его из пласта. Но аналогичные данные имеются и по другим месторождениям.
Многочисленные лабораторные исследования вытеснения нефти водой из образцов керна показывают, что нефтеотдача их зависит от проницаемости (чем она выше, тем больше коэффициент вытеснения). Это вполне естественно. Как уже отмечалось, исследованиями В.М. Березина для девонских песчаников Туймазинского месторождения установлено, что при увеличении проницаемости от 70 до 1080 мд коэффициент вытеснения изменяется от 0,57 до 0,77. Исходя из представления опережающего оттеснения нефти фильтратом раствора из-под долота в глубь пласта, следовало бы ожидать такую же зависимость степени промывки керна от их проницаемости, т.е. остаточная нефтенасыщенность менее проницаемого керна должна была бы быть выше нефтенасыщенности более проницаемого керна.
Как видно из рис.2, довольно четко отмечается, что с увеличением проницаемости кернов нефтенасыщенность их увеличивается, а водонасыщенность уменьшается. Содержание хлоридов в воде из кернов свидетельствует о меньшей степени промывки высокопроницаемых кернов и более слабом разбавлении погребенной воды фильтратом раствора.
Эти результаты явно противоречатпредставлению промыва кернов вследствие опережающего оттеснения нефти из-под долота при выбуривании.
Таблица 1
Физические свойства образцов керна из пластов Д1 и Д2 Туймазинского месторождения, выбуренных с раствором на водной основе (скв.1283)
Глубина, м | Пористость,% | Проницаемость,мд | Водонасыщенность | Нефтенасыщенность | Суммарная водонефтенасыщенность | Среднийрадиуспор,мк | Удельная поверхностьсм2 /см3 | Концентрацияхлоридов,% |
% от объма пор | ||||||||
16281629 | 21,4 | 927 | 27,9 | 20,5 | 48,5 | 5,9 | 720 | 1,08 |
16281629 | 23,3 | 1245 | 23,3 | 26,7 | 50,0 | 6,5 | 700 | 0,787 |
16281629 | 19,5 | 627 | 34,4 | 22,6 | 57,0 | 5,1 | 760 | 0,66 |
16281629 | 17,6 | 483 | 24,8 | 23,6 | 48,4 | 6,2 | 740 | 1,01 |
1629,91631 | 21,8 | 610 | 33,13 | 32,5 | 65,7 | 4,7 | 900 | 0,723 |
1629,91631 | 22,6 | 890 | 42,0 | 25,8 | 67,8 | 5,6 | 790 | 0,599 |
1629,91631 | 23,0 | 735 | 34,0 | 25,4 | 59,54 | 5,1 | 895 | 0,63 |
1629,91631 | 24,5 | 1515 | 25,9 | 36,4 | 62,3 | 7,1 | 690 | 0,743 |
16391640 | 22,7 | 470 | 28,4 | 24,6 | 53,0 | 4,12 | 1105 | 0,475 |
16411642 | 23,6 | 403 | 18,8 | 15,5 | 34,3 | 3,7 | 1255 | 0,75 |
16411642 | 23,8 | 1450 | 26,2 | 38,1 | 64,4 | 6,9 | 715 | 0,478 |
16411642 | 24,5 | 1730 | 33,2 | 23,3 | 56,6 | 7,7 | 640 | 0,473 |
16411642 | 21,8 | 1370 | 18,0 | 38,8 | 56,9 | 7,1 | 610 | 1,21 |
16411642 | 22,3 | 1720 | 14,4 | 47,8 | 62,3 | 7,9 | 564 | 1,00 |
16601662 | 21,7 | 471 | 38,8 | 9,14 | 67,9 | 4,2 | 1030 | 0,55 |
16601662 | 21,7 | 552 | 28,1 | 16,5 | 45,2 | 4,5 | 950 | 0,89 |
16601662 | 22,1 | 70 | 32,1 | 30,2 | 62,8 | 1,6 | 2720 | 0,345 |
16601662 | 22,6 | 542 | 23,7 | 34,1 | 63,9 | 4,45 | 1030 | 0,539 |
16641666 | 25,5 | 1337 | 15,5 | 37,6 | 53,1 | 6,5 | 780 | 3,27 |
16671669 | 23,7 | 335 | 31,4 | 31,2 | 62,6 | 3,4 | 1400 | 0,607 |
1673,61675 | 22,4 | 275 | 41,6 | 15,45 | 57,05 | 3,1 | 1430 | |
1673,61675 | 23,0 | 409 | 35,5 | 15,8 | 51,3 | 3,8 | 1210 | 0,444 |
Низкую водонасыщенность кернов (в среднем 20-35%) и суммарную нефте-водонасыщенность кернов (в среднем 50-65%) также невозможно объяснить указанной схемой промыва. Суммарная нефте-водонасыщенность кернов на забое составляет 100% от объема пор. При выносе кернов на поверхность она может быть снижена лишь за счет выделения и расширения газа из остаточной нефти. Но если перенасыщенность кернов на забое составляет всего 25-30%, то газ из этой нефти не может вытеснить 35-50% от объема пор жидкости из гидрофильных кернов и тем более воды, которая удерживается в порах капиллярными силами.
И, наконец, невозможность промыва кернов за счет опережающего оттеснения нефти из-под долота фильтратом раствора становится очевидной из сопоставления скоростей бурения и водоотдачи глинистых растворов. Водоотдача обычно применяемых при бурении растворов составляет 5-12 см3 за 30 минчерез поверхность в 75 см2 . Через 1 см2 поверхности забоя водоотдача раствора с учетом большого перепада давления между забоем и пластом не превышает 0,2-0,3 см3 . При пористости пласта 20% и коэффициенте вытеснения 0,5 скорость водоотдачи глинистого раствора в пласт будет не более 4-6 см/ чтогда как долото при бурении в продуктивном пласте проходит со скоростью не менее 5-6 м/ч. Как видно, скорость проходки долота не менее чем в 100 раз выше скорости водоотдачи раствора. Поэтому керн, выбуриваемый из пласта, никак не может быть промыт фильтратом раствора прежде, чем он войдет в керновую трубу.
Следовательно, промывка кернов фильтратом глинистого раствора происходит после его выбуривания, в стволе скважины, до выноса на поверхность. Процесс этот может осуществляться только под действием капиллярных сил, обусловливающих проникновение фильтрата раствора в керн, а нефти из керна в окружающий раствор. В зоне, где давление в скважине становится ниже давления насыщения, одновременно с капиллярной пропиткой происходят выделение газа из нефти и дополнительное вытеснение ее.
Таким образом, вода в керн внедряется только под действием капиллярных сил, а нефть из керна вытесняется вследствие совместного действия капиллярных сил и энергии расширяющегося газа. Исходя из такого процесса промывки кернов, становятся понятными и объяснимыми все отмеченные особенности нефтенасыщенности и водонасыщенности кернов в зависимости от проницаемости (рис.2).
3. Наиболее показательный и доступный для контроля процесс капиллярной пропитки водой нефтяного пласта наблюдается при простое или консервации обводненных эксплуатационных скважин.
В промысловой практике весьма распространены случаи, когда остановленные сильно обводненные скважины через некоторое время оказываются полностью заполненными нефтью. Бесспорно, что процесс этот протекает при встречном движении нефти и воды и всегда в нем преобладают капиллярные силы. Но когда в период простоя одних скважин другие скважины на залежи продолжают работать, можно предположить, что поступление нефти в простаивающие скважины происходит вследствие продолжающегося движения нефти в пласте к действующим скважинам, а не под действием капиллярных сил. Поэтому убедительными и однозначными данными, свидетельствующими о капиллярном характере замещения в скважинах воды нефтью, могут служить результаты по скважинам, когда совсем не было отбора нефти из залежи, т.е. в период консервации их.
Примеров полной временной консервации залежей в нефтепромысловой практике немного. Однако в Куйбышевской области проведены два таких опыта - на залежах пласта Б2 месторождении Яблоновый Овраг и Губинском месторождении.
Залежь пласта Б2 была законсервирована в октябре 1957 г., когда обводненность добываемой продукции всех скважин составляла 95-97%. Консервация продолжалась в течение года. Пластовое давление в залежи за 3-4 месяца восстановилось до начального. За 6-8 месяцев все скважины оказались заполненными нефтью, давление на устьях поднялось до 5-10 ат. Когда они были введены в эксплуатацию, в первые сутки была получена безводная нефть.
Залежь пласта Б2 Губинского месторождения была законсервирована в октябре 1964 г. на 1-1,5 месяца в соответствии с экспериментом импульсного воздействия на пласт (цикличный отбор жидкости). Продукция скважин также была обводнена на 95-99% (табл.2). Так же, как и на месторождении Яблоновый Овраг, во всех скважинах происходило замещение воды нефтью.
Таким образом, данные по обводненным эксплуатационным скважинам пласта Б2 месторождения Яблоновый Овраг и Губинское в период их полной консервации свидетельствуют о довольно активном процессе замещения воды в скважинах нефтью из пласта. Процесс этот также протекает при встречном движении нефти и воды, когда давления на забое скважин выше, чем давления в нефтенасыщенных слоях пласта, поэтому обусловлен он определенно проявлением капиллярных сил.
4. Еще более интересные капиллярные процессы происходят в нагнетательных скважинах. Промысловые исследования при помощи расходомера показывают определенную зависимость профиля приемистости или эффективной мощности от объема закачиваемой в скважины воды. При уменьшении его снижается "эффективная мощность и проводимость пласта" (k/h), при увеличении объема закачки, наоборот, наблюдается увеличение "эффективной мощности пласта".
Как видно из рис.3, при малом объеме закачки (600 м3 /сутки) верхние интервалы пласта воду не принимали, поэтому их можно было бы считать слабопроницаемыми, но с увеличением объема закачки до 1500 м3 /суткиприемистость верхних и нижних интервалов пласта стала одинаковой, а при дальнейшем увеличении объема закачки воды в пласт до 2700 м3 /сутки, наоборот, приемистость верхних интервалов стала значительно выше, чем нижних. Иными словами, с увеличением депрессии на пласт произошло обращение приемистости различно проницаемых интервалов пласта. Аналогичная картина наблюдается и на других месторождениях (Ромашкинском, Мухановском, Покровском и др.). Исходя из законов гидродинамики (закона Дарси), объяснить это явление обращения приемистости разных слоен нельзя. В работах увеличение гидропроводности с повышением депрессии объясняется существованием в неоднороднослоистых пластах так называемого порога давления. Однако при этом остается необъяснимым обращение приемистости различных интервалов при изменениях объема закачки воды или депрессии на пласт.
Рис.3 Профиль приемистости скв. 205 пласта А3 Кулешовского месторождения при различных расходах воды. Расходомер РГД.
Эти необычные явления могут быть обусловлены и эффективно объяснены лишь проявлением капиллярных сил при закачке воды. На фронте заводнения, в данном случае на стенке скважины, вследствие образования скачка насыщенности различных фаз на границе двух сред возникает градиент капиллярного давления, направленный на выравнивание насыщенности фазами разных сред. Вследствие неоднородности пластов капиллярный градиент давления является причиной того, что при ограниченной закачке воды в скважину при невысоких гидростатических перепадах (градиентах) давления вода внедряется лишь через некоторую часть поверхности стенки скважины, а через другую часть вода не внедряется совсем или даже нефть может поступать из пласта в скважину. С увеличением объема закачки и гидростатического перепада давления капиллярный градиент давления преодолевается и вода начинает внедряться в пласт через ту часть поверхности, через которую при малом объеме закачки поступлению ее в пласт препятствовали капиллярные силы. Практически в скважине с перфорированной обсадной колонной, очевидно, в одни отверстия вода поступает, а в другие, поскольку капиллярные силы препятствуют, нет.
Данные исследования скважин пласта Б2 Губинского месторождения в период консервации в октябре-ноябре 1964г.
№скв. | До консервации | В период консервации | ||||||||||||||
Параметры режима работы | Дебит, т/сут | обводнениепообъёму,% | забойноедавление, ат | датаостановки | Датазамера | Статуровень | водонефт.раздел | нач.столб нефти | Пластовоедавление, ат | обводненность продукции после консерваци % | ||||||
насос | Глубина, м | Мощностьпласта,м | нефти | воды | жидкости | |||||||||||
подвески | забоя | Размеры в м | ||||||||||||||
9 | эцн160 | 610 | 745 | 9,4 | 7 | 215 | 122 | 96 | 17 | 1/X3/XI | 13/X3/XI | 170125 | 430481 | 910 | 97 | |
10 | эцн250 | 594 | 3 | 5 | 150 | 155 | 96 | 22/IX | 17/X26/X7/XII | 225170161 | 464423425 | 24 | 91,8 | |||
13 | эцн250 | 546 | 961 | 8 | 8,8 | 212,2 | 221 | 95 | 48 | 1/X | 13/X2/XI | 192167 | 290270 | 26 | 97,2 | |
14 | эцн250 | 590 | 894 | 6,2 | 5,6 | 264,4 | 270 | 97,5 | 35 | 1/X | 14/X12/XI | 193166 | 310280 | 10 | 99,3 | |
15 | эцн250 | 575 | 1096 | 8,6 | 5,5 | 217,5 | 223 | 97 | 60 | 22/IX | 16/X26/X5/XI | 291192184 | 360284276 | 19 | 85,288,8 | |
16 | эцн160 | 534 | 1108 | 12,9 | 5,3 | 127,5 | 133 | 96 | 64 | 1/X | 14/X10/XII | 212326 | 245390 | 27 | 98,2 | |
17 | эцн160 | 620 | 1065 | 6,5 | 3 | 236 | 239 | 98,4 | 50 | 1/X | 12/X27/X5/XII | 182160253 | 226206200 | 9 | 9797 | |
18 | нгн270 | 530 | 1072 | 7,2 | 0,4 | 83,6 | 84 | 99,4 | 61 | 1/X | 27/X15/X2/XII | 170182235 | 214225275 | 5 | 98,297 | |
19 | нгн270 | 560 | 1104 | 12 | 0,6 | 59,4 | 60 | 98,9 | 61 | 1/X | 17/X12/XI | 201179 | 225203 | 7 | 98,2 | 99,4 |
Только так можно объяснить наличие нефти буквально у стенок нагнетательных скважин после прокачки огромных объемов воды и поступление сразу же нефти при самоизливе имеете с водой. Это наблюдалось также на многих месторождениях (Покровском, Кулешовском, Азнакаевскойплощади, Ромашкинскогоместорождения н др.).
Подобное явление установлено и экспериментально на линейных гидрофильных моделях пласта. При нагнетании воды был обнаружен концевой эффект на входном сечении модели пласта - вода внедрялась только через часть входного сечения, а из другой части сечения вытекала нефть во входную камеру. Затем с увеличением: закачки встречное движение нефти прекращалось, но вода по-прежнему поступала только через первоначальную обводненную часть входного сечения модели пласта.
5. И, наконец, наибольший интерес представляют промысловые данные о проявлении капиллярных сил в процессе заводнения продуктивных пластов. Показательные данные в этом отношении получены при заводнении карбонатных трещиновато-пористых пластов. В Куйбышевской области заводнение карбонатных пластов осуществляется с 1947 г. на многих месторождениях (Калиновском, Мухановском, Яблоновом Овраге, Покровском, Якушкинском и др.).
Роль капиллярных процессов в заводнении продуктивных карбонатных пластов всех этих месторождений отчетливо устанавливается сравнением скоростей движения первоначального фронта заводнения и воды с индикатором (флюоресцином) уже в заводненном пласте. Анализ результатов заводнения пластов и опытной закачки воды с различными индикаторами с целью определения направления и скорости движения воды проведен в работах.
В качестве примера можно рассмотреть наиболее ранние результаты заводнения пласта Iкунгурского яруса Мухаповского месторождения. Залежь разрабатывается с 1947 г. Проницаемость пласта по керну не более 30-50 мд, по промысловым данным 200 - 250 мд. Вязкостьнефти 3-5 спз. Запасы нефти около 2 млн. т. На залежи пробурено более 50 скважин с плотностью сетки 2-6 га/скв. До начала 1949 г. из залежи было извлечено примерно 12% запасов нефти - давление снизилось от начального (44 ат) до 22-26 ат. Отмечалось внедрение в залежь контурных пластовых вод. Через 1-1,5 года эксплуатации появилась вода в приконтурных скважинах. В июне 1949 г. начата опытная закачка в приконтурную скв. 19, а затем в скв.41, 102, 63, 99 на восточном участке. В октябре 1950 г. в скв. 19 была закачана вода с раствором флюоресцина. К этому времени все скважины участка (39 скважин) были в разной степени обводнены от 5-6 до 90-95%. Средняя обводненность продукции с участка составляла 43%. Вода с индикатором от скв. 19 была получена в 11 эксплуатационных скважинах (скв.62, 39, 32, 31, 61 и др.), расположенных в первом, втором и третьем рядах от контура нефтеносности на расстоянии 200-850 м от нагнетательной скв. 19. В ближайших скважинах флюорсцен был отмечен через 21-24 ч, а в дальних скважинах - через 2,5 суток после закачки его в скв. 19. Средняя скорость движения воды с флюоресциномсоставила 12,6 м/ч или 300 м/сутки. Повторные исследования закачки флюоресцина в скв.68, расположенную на противоположном крыле залежи, в 1951г. показали среднюю скорость движения воды 13,6 - 15,2 м/ч , или 360 м/сутки. Скорость молекулярнойдиффузии флюоресцина (по лабораторным исследованиям) не превышает 0,35 - 0,5 м/ч . Кроме того, флюоресцин адсорбируется породой пласта. Отбор жидкости из залежи в пластовых условиях оставался постоянным и даже в период закачки флюоресцина был меньше, чем в предшествующий период заводнения.
Аналогичные результаты были получены при исследовании скорости движения воды в заводненных пластах и всех других указанных месторождений Куйбышевской области. На Восточно-Степановском участке площадного заводнения Калиновского месторождения в 1948 г. скорость движения воды в заводненном пласте составляла 30-50 м/сутки. На месторождении Яблоновый Овраг 240 - 280 м/сутки, на Якушкинском и Покровском месторождениях 120-250 м/суткии на месторождении Карабулак-Ачалуки 30 - 45 м/сутки. Такие скорости движения воды возможны, конечно, только в сильно трещиноватых пластах. Но скорость движения первоначального фронта заводнения на этих же месторождениях при той же трещиноватости пластов не превышала 250 - 500 м/год, или 0,65-1,5 м/сутки.
Как видно, скорость движения воды (с флюоресцином) в заводненных пластах значительно (в 50-150 раз) выше, чем скорость движения первоначального фронта заводнения - фронта вытеснения нефти водой. Если учесть более высокие фильтрационные сопротивления пластов при первоначальном заводнении за счет вязкости нефти, то и тогда это отношение скоростей движения будет не менее чем в 10-20 раз больше.
Без участия капиллярных сил в процессе заводнения продуктивных пластов невозможно объяснить столь огромную разницу в скоростях движения первоначального фронта воды и воды "меченой" флюоресцином после заводнения пластов. Очевидно, при первоначальном внедрении воды в нефтенасыщенную зону залежи происходило замедление, "торможение" движения фронта вытеснения нефти водой, которое обусловливалось капиллярной пропиткой. Вследствие трещиноватости и слоистой неоднородности пластов внедрение воды в нефтяные залежи было неравномерным с опережающим заводнением трещин и наиболее проницаемых слоев. Это можно назвать первичным охватом пластов заводнением. Между обводненными трещинами и нефтенасыщенными пористыми блоками создается скачок насыщенности и как следствие высокий капиллярный градиент давления, который направлен на выравнивание насыщенности разных сред. Под действием капиллярного градиента давления происходит пропитка пористых нефтенасыщенных блоков, т.е. вторичный, дополнительный охват заводнением пластов, а следовательно, отток воды из трещин в блоки, что и является причиной "торможения" или замедленного движения первоначального фронта вытеснения нефти водой. После заводнения наиболее крупных трещин и капиллярной пропитки прилегающих к ним окрестностей пористых блоков закачиваемая вода без замедления проходит путь от нагнетательных скважин к эксплуатационным.
Таким образом, изложенные результаты исследования скоростей движения воды в карбонатных трещиноватых пластах свидетельствуют о том, что заводнение их сопровождалось капиллярными процессами. Помимо основного заводнения, обусловленного гидростатическим перепадом давления, происходил дополнительный охвват заводнением плотных пористых блоков.
При опережающем внедрении воды по трещинам даже при установившемся течении и μн > μв эпюра давлений между контуром питания и зоной отбора такова, что давление в заводненном слое или трещине выше, чем в смежном нефтенасыщенном пористом блоке. Следовательно, в течение всего периода продвижения фронта вытеснения нефти водой из трещин между ними и нефтенасыщенными менее проницаемыми пористыми блоками существует некоторый непостоянный перепад давления. Кроме того, во всех рассматриваемых залежах до закачки воды с индикатором искусственное заводнение осуществлялось при периодически изменяющемся объеме, что также создавало попеременный перепад давления. Однако пропитка пористых блоков за период продвижения фронта вытеснения нефти водой по трещинам полностью не завершена. Достаточно сказать, что по всем указанным месторождениям достигнутая нефтеотдача при заводнении составляет 30-43%. Очевидно, глубина капиллярной пропитки блоков была небольшая.
По пласту Б2 месторождения Яблоновый Овраг межслойная капиллярная пропитка наблюдалась на конечной стадии разработки залежи в период консервации ее в 1957 г. При вводе после консервации в эксплуатацию всех скважин обводненность продукции их возросла и достигала даже 100%. Затем через 3-4 месяца обводненность стала снижаться, достигла 92% и в течение последующих 1,5-2 лет оставалась ниже, чем была до консервации. За этот период дополнительная добыча нефти составила более 12,5 тыс. т, что соответствует повышению нефтеотдачи на 0,6-0,75%. Столь значительное снижение обводненности добываемой продукции свидетельствовало о повышении содержания подвижной нефти в заводненных слоях и трещинах, т.е. о явлении "перемешивания" нефти и воды в послойно обводненном пласте.
Эти результаты могли быть обусловлены, очевидно, только проявлением капиллярных сил, т.е. межслойной капиллярной пропиткой. В результате происходил переток нефти из менее проницаемых нефтенасыщенных слоев в высокопроницаемые заводненные, снижение фазовой проницаемости для воды и повышение ее для нефти.
Таким образом, капиллярные процессы происходят в самых
29-04-2015, 00:55