ЦВЕТ, СВЕТ И ЗРЕНИЕ
СОДЕРЖАНИЕ
Введение |
1. Свет |
2. Органы зрения |
2.1. Основные тенденции развития органов зрения в животном мире |
2.2. Цветовое зрение |
3. Зрительный анализатор человека |
3.1. Строение глаза |
3.2. Оптическая система |
3.3. Адаптация |
3.4. Световая и цветовая чувствительность |
4. Фотохимическая теория зрения |
5. Объяснение цвета тел |
Заключение |
Список использованной литературы |
Приложения |
ВВЕДЕНИЕ
Учение о свете и световых явлениях составляет раздел физики, называемый оптикой.
Знание основных оптических законов имеем большое познавательное и практическое значение.
Мы живем в мире разнообразных световых явлений. Многие из ни, например такие, как вечерние зори, когда небо и облака над горизонтом как будто пылают в огне; радуга, простирающаяся от горизонта до горизонта, или полярные сияния, наблюдающиеся в полярных широтах, весьма красочны. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.
Чтобы выяснить причины тех или иных световых явлений, нужно обнаружить связь наблюдаемого явления с другими явлениями и объяснить его на основании определенного закона природы. Тогда загадочность явления исчезнет, и мы приобретем о нем научное знание.
В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – настолько они привычны для нас, а вот объяснить их часто затрудняемся. Например,
чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку.
А вот пример более сложного светового явления. Мы видим окружающие нас предметы многоцветными при освещении солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.
На основе законов оптики возникла оптическая и осветительная техника.
Оптическая техника получила свое развитие благодаря изобретению и использованию линз. Линзы составляют главную основу оптических приборов. Каждому теперь известны очки, лупа, микроскоп, бинокль, телескоп и др.
Но самым главным и ценнейшим для нас является живой оптический – наш орган зрения – глаз.
1. СВЕТ – ИСТОЧНИК ЗРЕНИЯ
Когда мы при дневном свете смотрим на различные тела, Тела окружающие нас, мы видим их окрашенными в различные цвета. Так трава и листья деревьев – зеленые, цветы – красные или синие или желтые или фиолетовые. Есть также черные, белые, серые тела. Вс6е это не может не вызывать удивление. Казалось бы, все тела освещены одним и тем же светом – светом Солнца. Почему же различны их цвета
Будем исходить из того , что свет – электромагнитная волна, то есть распространяющая переменное электромагнитное поле. В солнечном свете содержаться волны, в которых электрическое и магнитное поля колеблются с различными частотами.
Всякое же вещество состоит из атомов и молекул, содержащих заряженые частицы, которые взаимодействуют друг с другом. Поскольку частицы заряжены под действием электрического поля они могут двигаться, а если поле переменное – то они могут совершать колебания, причем каждая частица в теле имеет определенную собственную частоту колебаний.
Это простая, хотя не слишком точная картина позволит нам понять, что происходит при взаимодействии света с веществом.
Когда на тело падает свет, электрическое поле, ‘принесенное’ им, заставляет заряженные частицы в теле совершать вынужденные колебания (поле световой волны переменное). При этом у некоторых частиц их собственная частота колебаний может совпадать с какой-то частотой колебаний поля световой волны. Тогда, как известно, произойдет явление резонанса – резкого увеличения амплитуды колебаний. При резонансе энергия, принесенная волной, передается атомам тела, что в конечном счете вызывает его нагревание. О свете, частота которого попала в резонанс говорят, что он поглотился теплом.
Но какие то волны из падающего света не попадают в резонанс. Однако они тоже заставляют колебаться с малой амплитудой. Эти частицы сами становятся источником так называемых вторичных электромагнитных волн тлой же частоты. Вторичные волны, складываясь с падающей волной, составляют отраженный или проходящий свет.
Если тело непрозрачное, то поглощение и отражение все, что может произойти с падающим на тело светом: не попавший в резонанс свет отражается, попавший – поглощается. В этом и состоит “секрет” цветности тел. Если например из состава падающего солнечного света в резонанс попали колебания, соответствующий красному цвету, то в отраженном свете их не будет. А наш глаз устроен так, что солнечный свет, лишенный своей красной части, вызывает ощущение зеленого цвета. Окраска непрозрачных тел зависит, таким образом, от того, какие частоты падающего света отсутствуют в свете, отраженным телом.
Существуют тела, в которых заряженные частийы имеют так много различных собственных частот колебаний, что каждая или почти каждая частота в падающем свете попадает в резонанс. Тогда ведь падающий свет поглощается, и отражаться просто нечему. Такие тела называют черными, то есть телами черного цвета.
2.ОРГАНЫ ЗРЕНИЯ И ИХ ЭВОЛЮЦИЯ.
2.1Основные тенденции развития органов зрения в животном мире.
Органы многоклеточных животных (кроме губок), обеспечивают восприятие световых раздражений. Основные элементы органов зрения - светочувствительные клетки (фоторецепторы). Простые органы зрения (например, у дождевых червей) состоят из светочувствительных клеток без пигмента, рассеяных среди эпителиальных клеток наружного покрова. Они воспринимают лишь изменения в интенсивности освещения и не реагируют на направление падаюшего света. У пиявок образуются скопления светочувствительных клеток, подостланные или заэкранированные пигментными клетками, которые изолируют светочувствительные клетки от боковых лучей, что позволяет различать не только интенсивность, но и направление падающего света. У некоторых медуз и плоских червей органы зрения - разрозненные светочувствительные клетки, концентрирующиеся в глазные пятна (стигмы). Дальнейшее усложнение органов зрения привело к углублению эпителия глазного пятна в глазной бокал. Если края его смыкаются, органы зрения принимают форму пузырька, заполненного студнеобразным веществом, образующим стекловидное тело. Такое постепенное развитие органов зрения характерно для многощетинковых червей и молюсков. Зрительные клетки таких органов зрения лежат под эпителием и вместе с пигментными клетками образуют сетчатку. У многих членистоногих органы зрения представлены фасеточными глазами. Дальнейшее усовершенствование пузырчатого органа зрения приводит к увеличению числа фоторецепторов, появлению роговицы, радужной оболочки со зрачком хрусталика, особого аккомодационного приспособления и мускулатуры, служащей для движения самого глаза. Органы зрения развиваясь независимо в различных филогенетических ветвях животного мира, на высших ступенях приобретают сходное строение. При этом ведущим фактором эволюции органов зрения по-видимому, была тенденция оптимального сочетания процессов как большего использования энергии светового потока, таки улучшение избирательной чувствительности
Каждое животное видит мир по-своему. Сидя в засаде, лягушка видит только движущиеся предметы: насекомых, на которых они охотятся, или своих врагов. Чтобы увидеть все остальное, она должна сама начать двигаться.
Сумеречные и ночные животные (например, волки и другие хищные звери), как правило, почти не различают цветов.
А вот стрекоза хорошо различает цвета, но только... нижней половиной глаз. Верхняя половина смотрит в небо, на фоне которого добыча и так хорошо заметна.
О хорошем зрении насекомых мы можем судить хотя бы по красоте цветков растений - ведь эта красота предназначена природой именно для насекомых-опылителей. Но мир, какими они его видят, сильно отличается от привычного нам.
Цветки, которые опыляют пчелы, обычно не окрашены в красный цвет: пчела этот цвет воспринимает, как мы - черный. Зато, вероятно, многие невзрачные на наш взгляд цветы приобретают неожиданное великолепие в ультрофиолетовом спектре, в котором видят насекомые. На крыльях некоторых бабочек (например, лимонницы) имеются узоры, скрытые от человеческого глаза и видимые только в ультрофиолетовых лучах.
Удивительным образом используют особенности зрения насекомых некоторые пауки, поджидающие своих жертв внутри цветков. Разумеется, будущая жертва, садясь на цветок, не должна замечать паука, между тем, на брюшках многих таких пауков бросаются в глаза яркие красные пятна. Чем это объяснить? Оказывается, когда на тех же пауков взглянули, так сказать, глазами насекомых, пятна стали совершенно незаметными. Зато птицам, которые могут склевать пауков, отпугивающие пятна заметны превосходно. Значит, паук "загримирован" для насекомых, но "ярко раскрашен" для птиц.
Кстати говоря, насекомые определяют положение солнца, чтобы находить дорогу, даже в пасмурные дни. Ультрафиолетовые лучи свободно проходят сквозь слой облаков. Когда муравьев в ходе опыта стали облучать сильными ультрафиолетовыми лучами, они побежали укрываться "в тень" не под защиту пропускавшей ультрафиолет темной дощечки, а под прозрачное, на наш взгляд, стекло, задерживающее эти лучи.
2.2. Цветовое зрение.
Важное свойство зрительного восприятия человека – видение в цвете – объясняет теория цветного видения. Эта теория исходит из того, что в глазу есть три типа светочувствительных приемников, отличающихся друг от друга разной чувствительностью к разным частям спектра – красной, зеленой и сине-голубой. Цветовое ощущение возникает в колбочках. Пока не установлено, имеются ли приемники всех трех типов в каждой колбочке или существуют три различных вида колбочек.
Глаз обычного человека может различать около 160 цветов. Тренированный глаз художника и красильщика в состоянии различать свыше 10000 цветных тонов.
Встречаются люди (более 1% мужчин и около 0.1% женщин), зрение которых характеризуется отсутствием приемников одного из указанных выше типов. Еще реже (примерно один или миллион) встречаются люди, у которых есть приемники лишь одного типа. Первая группа людей – дихроматы – различают меньше цветов, чем люди с нормальным зрением; вторая – монохроматы – совсем не различают цвета.
Для получения цветного ощущения важен не только спектральный состав отраженного или испускаемого наблюдаемым объектом света, но и мощность излучения других расположенных рядом предметов.
Цвет многое значит в нашей жизни. Механизм цветного воздействия пока несет, хотя накоплено множество интересных экспериментальных факторов. Известно, что красный цвет возбуждает, черный угнетает, зеленый успокаивает, желтый создает хорошее настроение.
Способность человеческого организма реагировать на цвет – основа одного из направлений натуртерапии – лечение природными средствами. Доказано, что черный цвет может замедлить течение инсульта и малярии, красный помогает при лечении бронхиальной астмы, кори, рожистых заболеваний кожи, голубой замедляет пульс и понижает температуру. Больным глаукомой полезно носит очки с зелеными стеклами, а гипертоникам – с дымчатыми. Исследования показали, что при красном свете снижается слуховая чувствительность человека, а при зеленом отмечено ее повышение. “Холодные” тона стимулируют белковый обмен, а “теплые”, наоборот, тормозят. Если школьный класс окрасить в белый, бежевый или коричневый тона, то улучшится успеваемость и дисциплина учащихся. В производственных помещениях, окрашенных в голубой и бежевые цвета, повышается производительность труда.
3.ЗРИТЕЛЬНЫЙ АНОЛИЗАТОР ЧЕЛОВЕКА
3.1Строение глаза.
Глаз – орган зрения, воспринимающий световые раздражения; является частью зрительного анализатора, который включает также зрительный нерв и зрительные центры, расположенные в коре головного мозга.
Глаз, глаз или глазное яблоко, имеет шаровидную форму и помещается в костной воронке – глазнице. Сзади и с боков он защищен от внешних воздействий костными стенками глазницы, а спереди – веками.
Веки представляют собой две кожные складки. В толще век заложена плотная соединительно-тканная пластинка, а также круговая мышца, замыкающая глазную щель. По свободному краю век растут ресницы (100 – 150 на верхнем веке и 50 – 70 на нижнем) и открываются протоки сальных железок. Ресницы защищают глаз от попадания в него инородных тел (частиц пыли). Внутренняя поверхность век и передняя часть глазного яблока, за исключением роговицы, покрыта слизистой оболочкой – конъюнктивой. У верхненаружного края глазницы расположена слезная железа, которая выделяет слезную жидкость, омывающую глаз. Равномерному ее распределению на поверхности глазного яблока способствует мигание век. Слезы, увлажняя глазное яблоко, стекают по передней его поверхности к внутреннему углу глаза, где на верхнем и нижнем веках имеются отверстия слезных канальцев (слезные точки), вбирающие слезы. Слезные канальцы впадают в слезно носовой канал, открывающийся в нижний носовой ход.
Движение глазного яблока и их согласованность осуществляются при помощи шести глазных мышц. Глазное яблоко имеет несколько оболочек. Нижняя – склера, или белочная оболочка, - плотная непрозрачная ткань белого цвета. В передней части глаза она переходит в прозрачную роговицу, как бы вставленную в склеру подобно часовому стеклу. Под склерой расположена сосудистая оболочка глаза, состоящая из большого количества сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку). В ресничном теле заложена так называемая цилиарная мышца, связанная с хрусталиком (прозрачное эластичное тело, имеющее форму двояковыпуклой линзы), и регулирующая его кривизну. Радужка расположена за роговицей. В центре радужки имеется круглое отверстие – зрачок. В радужке расположены мышцы, которые изменяют величину зрачка, и в зависимости от этого в глаз попадает большее или меньшее количество света. Ткань радужной оболочки сдержит особое красящее вещество (пигмент) – меланин. В зависимости от его количества цвет радужки колеблется от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. При отсутствии в ней меланина лучи света проникают в глаз не только через зрачок, но и через ткань радужки. При этом глаза имеют красноватый оттенок. Недостаток пигмента в радужке часто сочетается с недостаточной пигментацией остальных частей глаз, кожи, волос. Таких людей называют альбиносами. Зрение у них обычно значительно понижено.
Между роговицей и радужкой, а также между радужкой и хрусталиком имеются небольшие пространства, называемые соответственно передней и задней камерами глаза. В них находится прозрачная жидкость – так как называемая водянистая влага. Она снабжает питательными веществами роговицу и хрусталик, которые лишены кровеносных сосудов. В глазу происходит непрерывная циркуляция жидкости. Процесс ее обновления – необходимое условие правильного питания тканей глаза. Количество циркулирующей жидкости постоянно, что обеспечивает относительное постоянство внутриглазного давления. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой – стекловидным телом. Внутренняя поверхность глаза выстлана тонкой, весьма сложной по строению, оболочкой – сетчаткой, или ретиной. Она содержит светочувствительные клетки, названные по их форме колбочками и палочками. Нервные волокна, отходящие от этих клеток, собираются вместе и образуют зрительный нерв, который направляется в головной мозг.
Глаз человека представляет собой своеобразную оптическую камеру, в которой можно выделить светочувствительный экран – сетчатку и светопреломляющие среды, главным образом роговицу и хрусталик. Хрусталик специальной связкой соединен с цилиарной мышцей, располагающейся широким кольцом позади радужки. С помощью этой мышцы хрусталик меняет свою форму – становится более или менее выпуклым и соответственно сильнее или слабее преломляет попадающие в глаз лучи света. Это способность хрусталика называется аккомодацией. Она позволяет отчетливо видеть предметы, расположенные на различном расстоянии, обеспечивая совмещение фокуса попадающих в глаз лучей от рассматриваемого предмета с сетчатой оболочкой.
Преломляющую способность глаза при покое аккомодации, то есть когда хрусталик максимально уплощен, называют рефракцией глаза. Различают три вида рефракции глаза: соразмерную (эмметропическую), дальнозоркую (гиперметропическую) и близорукую (миопическую). В глазу соразмерной рефракцией параллельный лучи, идущие от предметов, пересекаются на сетчатке. Это обеспечивает отчетливое видение предмета. Дальнозоркий глаз обладает относительно слабой преломляющей способностью. В нем параллельные лучи, идущие от далеких предметов, пересекаются за сетчаткой.
В близоруком глазу параллельные лучи, идущие от далеких предметов пересекаются впереди сетчатки, не доходя до нее.
Близорукий глаз хорошо видит только близко расположенные предметы. О степени дальнозоркости или близорукости судят по оптической силе линзы; приставленная к глазу в условиях покоя аккомодации, она так изменяет направление попадающих в него параллельных лучей, что они пересекаются на сетчатке. Оптическая сила линзы определяется в диоптриях. Различают дальнозоркость и близорукость слабой степени (до 3 дптр), средней (от 4 до 6 дптр) и высокой (более 6 дптр). Рефракция обоих глаз не всегда бывает одинаковой, например близорукость одного глаза и дальнозоркость другого глаза или разная их степень на обоих глазах. Такое состояние называют анизометропией.
Для ясного видения фокус попадающих в глаз лучей должен совпадать с сетчаткой. Но это не единственное условие. Для различения деталей предмета необходимо, чтобы его изображение попало на область желтого пятна сетчатки, расположенную прямо против зрачка. Центральный участок желтого пятна является местом наилучшего видения. Воображаемую линию, соединяющую рассматриваемый предмет с центром желтого пятна, называют зрительной линией, или зрительной осью, а способность одновременно направлять на рассматриваемый предмет зрительные линии обоих глаз – конвергенцией. Чем ближе
29-04-2015, 02:12