Вышеприведенным способом де ла Рив пытался золотить серебро, медь и железо. Но на двух первых металлах ему удалось получить лишь очень тонкий слой золота, имевший поэтому зеленоватый оттенок и легко отстававший от основы, а эксперименты с железом, по свидетельству Эльснера, вообще были неудачны.
Рассмотрим обстоятельства разработки и внедрения электрохимического золочения Джорджем Элкингтоном. Его фигура представляет для нас особый интерес, поскольку Элкингтон признан основателем электрохимической промышленности в Англии. Кроме того, единственный из всех награжденных, он еще до 1840 г. профессионально работал в области металлических покрытий. Его фабрика в Бирмингеме, где производили нанесение металлических покрытий различными методами, была создана не позднее 1830 г. Элкингтон был не только фабрикантом, но и вместе с братом Генри занимался изучением и разработкой новых процессов покрытий.
Примерно с 1834 г. братья приступили к опытам по химическому золочению или, как его иначе называли, золочению мокрым путем. Подробное описание этой работы было сделано в Донесении Ж. Дюма Парижской Академии наук.
При разработке технологического процесса за основу был взят метод амальгамирования. «Как и процесс позолочения посредством ртути, так и способ г-на Элкингтона подразделяется на три различных операции: 1) отжиг, 2) позолочение, 3) окраска.
Отжиг происходит по известному позолотчикам и обычному для них способу.
Приготовление ванны для позолочения составляет новую…часть процесса…
Когда предметы выходят из позолачивающей ванны, их еще раз моют; затем переходят к их окраске способом, употребительным при обычном позолачивании смесей».
В этой же статье приведено описание метода золочения «посредством ртути», и на основании сравнения двух методов сделан вывод, что«предшествующие самому позолочению и последующие операции те же, что и при позолочении посредством ртути (Курсив мой. – Авт.)». Иными словами, именно из способа амальгамирования Элкингтон позаимствовал такую важную методику, во многом определяющую успех всего процесса, как подготовка поверхности изделия перед покрытием.
На основании данных проверки, которую предприняла Комиссия по Нездоровым ремеслам по заданию Парижской Академии наук в 1840–1842 гг., мы определили, что толщина слоя золота, получавшегося путем химического осаждения, достигала, в среднем, 2 мкм, а способом амальгамирования – 20 мкм. Очевидно, что при таких результатах химический способ мог конкурировать с амальгамным только при условии нахождения пути увеличения толщины золотого покрытия.
И все же первоначально братья Элкингтоны связали свои дальнейшие исследования с совершенствованием способа химического золочения, и только случайная встреча Дж. Элкингтона с исследователем-любителем Дж. Райтом заставила их расширить направление работ.
Дело в том, что именно хирургу Дж. Райту приписывают приоритет открытия комплексных цианидных растворов, с введением которых в промышленную практику связывают коренной переворот как в гальванотехнике, так и в гидроэлектрометаллургии.
По данным американского историка химии К. А. Смита [25], идея использовать эти соединения возникла у Райта после того, как он нашел в «Летописях химии» Шееле сведения о растворимости цианидов золота и серебра в цианидах щелочных металлов. Проведя пробный опыт серебрения с использованием в качестве электролита раствор хлористого серебра в желтой кровяной соли:
2AgCl + K4Fe(CN)6 ----- 2K2Ag(CN)3 + FeCl2,
а в качестве источника тока вольтов столб , он провел процесс электрохимического серебрения.
Получив тонкий и одновременно твердый осадок, Райт отправился в Лондон, чтобы запатентовать свое изобретение (1840 г.). Там и произошла его встреча с Дж. Элкингтоном, в результате которой он был приглашен в Бирмингем для продолжения исследования процессов золочения и серебрения из цианидных растворов. Совместная работа увенчалась успехом, и 25 марта 1840 г. братья Г. и Дж. Элкингтоны получили патент под названием «Способы посеребрения и позолочения меди, латуни, железа и т. п.». (Дж. Райт в патент включен не был, так как уступил Элкингтонам свои авторские права.) Впоследствии этот патент послужил главным основанием для присуждения Дж. Элкингтону как одному из изобретателей электрохимического золочения премии Парижской Академии наук.
Рассмотрим этот патент с целью выявления возможных точек пересечения традиций в исследованиях Элкингтонов. Для этого приведем его формулу так, как она была заявлена владельцами: «Первая часть нашего изобретения… покрытие меди, латуни и т. д. серебром, причем серебро плавится на поверхности подлежащего покрытию металла… Вторая часть… состоит в покрытии или плакировке определенных металлов серебром простым применением раствора серебра или такового в соединении с гальваническим током… Третья часть.., состоящая в покрытии или плакировке золотом как при помощи простого применения раствора золота, так и этого раствора в соединении с гальваническим током… Четвертая часть относится к подготовке железа… ».
Как следует из описания изобретения, Элкингтоны патентовали три различных процесса покрытия, причем два последних – серебрение и золочение,– заявки на которые содержатся в пп. 2 и 3 формулы, аналогичны по своей методике. Процесс серебрения по п.1 состоит из следующих стадий:
1) очистка (обычным способом);
2) предварительное серебрение без применения гальванического тока (или по способу, запатентованному Г. Элкингтоном 4 декабря 1837 г., или с помощью горячего раствора азотнокислого серебра);
3) прокаливание изделия (для удаления излишков азотной кислоты);
4) оплавление (в расплаве буры) с целью получения блестящего, твердого, хорошо сцепленного с медной основой покрытия;
5) обработка кипящим раствором серной кислоты (для удаления приставшей буры);
6) окончательное отбеливание покрытия (повторным прокаливанием и обработкой кипящей серной или соляной кислотой) или нанесение тонкого слоя серебра с помощью гальванического тока.
Важно подчеркнуть, что применение гальванического тока на последней стадии не имеет самостоятельного значения. Вероятно, и сами исследователи не придавали электролизу слишком большого значения, так как не включили эту операцию в окончательный вариант п.1 формулы.
Аналогичным образом рассмотрим методики золочения и серебрения по пп.2 и 3 формулы. При описании основной операции – нанесения покрытия – отмечено: «Если, как при обычном серебрении, требуется только тонкий слой серебра, то мы предпочитаем применять раствор в кипящем виде, и покрытие образуется…в несколько секунд (до одной минуты),.. для этой степени посеребрения гальванической батареи не требуется. Но если желательно более толстое серебрянное покрытие.., то мы предпочитаем тот же самый раствор применять в холодном виде, и получаем тогда более толстый слой серебра с помощью гальванического тока».
Рассмотрим далее применявшуюяся Элкингтонами аппаратурную схему.
Из ряда работ следует, что в гальваностегии первыми «постоянные батареи» применили Элкингтоны. Чтобы проверить это, нами, по данному в патенте описанию, была проведена реконструкция применявшегося ими аппарата, показавшая, что на самом деле Элкингтоны пользовались «простым гальванопластическим аппаратом», и первое применение в гальваностегии «постоянных батарей» им приписывают ошибочно. По-видимому, первым в гальваностегии разделенную схему ввел Ф. К. Эльснер.
Таким образом, из анализа технологической схемы и аппаратурного оформления процесса нанесения покрытий, использовавшихся Элкингтонами, следует, что применение гальванического тока в нем было необязательным и не имело самостоятельного значения. По нашему мнению, сделать решающий шаг в этом вопросе Элкингтонам помешала слишком сильная связь с практической традицией нанесения металлических покрытий.
Рассмотрим обстоятельства изобретения гальванического золочения Анри де Рюольсом. Утверждают, что гальваностегией потомственный дворянин де Рюольс занялся случайно, когда, окончательно разорившись и пытаясь поправить свои финансовые дела, сначала написал оперу, не имевшую успеха у слушателей, а затем заинтересовался процессом гальванического золочения. (Однако, это по-видимому, было не столь уж случайно, поскольку он получил химическое образование, а, значит, – принадлежал к научной традиции).
Пытаясь найти способ золочения филигранных серебряных изделий, которые деформировались при нагревании, а потому не могли быть подвергнуты амальгамированию, он случайно увидел статью де ла Рива в «Библиотеке Женевского университета». Заинтересовавшись ею, де Рюольс попытался усовершенствовать предложенную последним методику. Он испытал шесть различных электролитов, потенциально пригодных для этой цели: 1. Раствор цианида золота в цианиде калия (AuCN в KCN); 2. Раствор цианида золота в желтой кровяной соли (AuCN в K4[Fe(CN)6]); 3. Раствор цианида золота в красной кровяной соли (AuCN в K3Fe(CN)6); 4. Раствор хлористого золота в тех же комплексных цианидных соединениях; 5. Хлорид золота–хлорид натрия, растворенный в «углекислом бикарбонате» натрия (по-видимому, NaAu(Cl)4 в Na2CO3 или NaHCO3); 6. Сернистое золото, растворенное в сернистом калии (K3[AuS2]).
Отметим, что уже в 1841–1844 гг. эти растворы были испытаны Эльснером, который установил, что лишь два из них: №1 – дицианоаурат калия – KAuCN2 и №2,– дают осадки золота хорошего качества. Вывод Эльснера, по существу, задал направление дальнейших исследований в области электрохимического золочения.
Проведенный нами анализ работ де Рюольса показал, что его основная заслуга состоит в том, что он впервые осуществил чисто гальванический процесс. Иными словами, именно Рюольс впервые разработал такую практическую методику получения металлических покрытий, в которой центральная операция – осаждение металла – полностью основана на электрохимическом действии электрического тока.
Другая заслуга Рюольса в том, что он также впервые показал широчайшие возможности электрохимического метода нанесения покрытий. Начав с золочения изделий из серебра, меди и ее сплавов, он перешел позже к обработке нейзильбера, а также железа, стали и олова, которые предварительно покрывал тонким слоем меди. Наконец, он показал применимость электрохимического способа к получению серебрянных, платиновых, медных, кобальтовых, никелевых, цинковых, оловянных и свинцовых покрытий.
Характеризуя его вклад в разработку технологического процесса электроосаждения металлов, Комиссия Французской Академии наук отмечала: «Г-н Рюольс счастливым выбором составов, растворяющих металлы, превзошел… всех своих предшественников и соперников. По его методе можно гальванически осаждать почти все металлы одни на другие, ровно и прочно, и главное, удовлетворительно для всех потребностей ремесел и искусств».
Таким образом, переход от лабораторных опытов по электроосаждению металлов (первая стадия) к технологическому процессу, или техническому методу (вторая стадия) произошел, как минимум, двух традиций: исследований в области электричества и практических способов нанесения металлических покрытий.
Чем, однако, обусловлена оговорка «как минимум»? Дело в том, что описывая период зарождения гальванотехники, мы сознательно рассматривали исследования, связанные с изучением действия электрического тока и способов его генерирования, как единое научное направление. Вплоть до изобретения гальванопластики практически не было ученых, целенаправленно работавших в области электроосаждения металлов.Такой подход обусловлен тем, что и электротехника, и соответствующие разделы физики, и электрохимия еще не выделились в качестве отдельных наук и научных направлений.
Обычно, и это уже было показано на примерах Б. С. Якоби, А. де ла Рива, исследователи одновременно изучали целый комплекс проблем: природу электрических явлений, механизм действия источников тока, разложение электрическим током различных веществ, занимались конструированием новых источников тока и усовершенствованием существующих. Иными словами, с современной точки зрения, совмещали исследования по физике, химии, электрохимии, электротехнике.
Интересно, что работы Б. С. Якоби историки науки относят, главным образом, к физике и электротехнике, исследования Д. Ф. Даниеля – к электрохимии и электричеству; работы изобретателя широко используемого гальванического элемента, получившего его имя, Р. В. Бунзена – к химии.
Таким образом, говоря о работах по электричеству первой половины XIX в., повлиявших на зарождение гальванотехники, имеют в виду в сущности несколько направлений: теоретическую электрохимию, возникновение которой обычно связывают с открытием Л. Гальвани и изобретением А. Вольта, а оформление как количественной науки – с работами М. Фарадея; исследования по электроосаждению металлов; работы, связанные с генерированием электрической энергии за счет химических процессов.
Поскольку, говоря о получении электрической энергии за счет химических процессов, мы в сущности касаемся уже области электротехники, следует отметить, что электротехника как наука и как промышленное производство выделилась в самостоятельную традицию в 1870–1880 гг.. При этом, поскольку главным стимулом их развития стало энергетическое применение электричества – освещение, транспорт, приведение в действие различных машин и механизмов в промышленности и быту,– основным путем получения энергии стало преобразование механической и тепловой энергии в электрическую. Что же касается первоначальных попыток получения электрической энергии за счет химических процессов, то это направление, хотя и не потеряло своего значения, является как бы боковой ветвью электротехники. В связи с этим представляется правомерным отнести 1830–1870 гг. к предыстории электротехники.
Нами уже рассматривался вопрос о значении исследований в области генерирования электроэнергии для возникновения технологического процесса нанесения электрохимических покрытий. Наиболее отчетливо пересечение электрохимической и электротехнической задач просматривается при анализе процесса возникновения гальванопластики. Так, Б. С. Якоби отмечал, что его изобретение было случайным следствием работы, проводившейся с целью усовершенствования для практических нужд медно-цинкового элемента Даниеля, с одной стороны, и что оно не могло быть сделано без наличия достаточно мощных и надежных источников тока, какими являлись «постоянные батареи», с другой.
Пересечение традиций просматривается и в работах других ученых, внесших большой вклад в развитие гальванотехники. Например, А. де ла Рив, работая с элементом Даниеля, раньше Б. С. Якоби заметил, что отложение меди на катоде воспроизводит профиль электрода. Лишь то, что он не смог осознать практического значения сделанного наблюдения, помешало ему дальше разработать этот процесс. Э. Вестон, занимавшийся химическим никелированием, и предложивший вводить в электролиты никелирования буфер – борную кислоту – одновременно является изобретателем стандартного химического элемента, носящего его имя.
Создание производственного процесса
(начало 1870-х – середина 1920-х гг.) Началом нового этапа развития гальванотехники стали 1870-е гг. Переход от ремесленной технологии к крупномасштабному гальваническому производству был связан с началом применения в гальванотехнике новых источников тока – динамомашин.
Взаимосвязь развития гальванотехники и электротехники
Переход от вольтова столба к «простым гальванопластическим аппаратам» и далее к разделенной схеме электролиза с использованием «постоянных батарей», значительно расширил возможности гальванотехники, позволив в лабораторных, а затем и кустарных, ремесленных условиях правильно намечать пути проведения процессов, добиваться воспроизводимых результатов, то есть разработать технологию получения электрохимических покрытий.
Однако в 1840-х гг., когда гальванические покрытия только начали применяться, подавляющую часть работ составляли золочение, серебрение и меднение. Основной областью использования покрытий являлось ювелирное дело, поэтому цена электроэнергии, хотя и очень высокая, составляла лишь небольшую часть общей стоимости изделий. Кроме того, малые объемы производства позволяли применять такие несовершенные источники тока, как химические элементы.
С конца 1860-х гг. основную роль в гальванотехнике стали играть более дешевые никелевые покрытия. Отсюда проистекало два следствия: возрастание доли стоимости электроэнергии в общей стоимости изделий и увеличение масштабов работ. С началом широкого применения никелирования гальванические покрытия стали использовать не только с декоративной, но и с более универсальной защитно-декоративной функцией. Это, в свою очередь, привело к тому, что недостатки «постоянных батарей»: малая мощность, непостоянство напряжения, трудоемкость эксплуатации, низкая экономичность,– стали серьезным тормозом развития гальванического производства.
Таким образом, дальнейшее развитие гальванотехники непосредственно зависело от успехов электротехники.
Первые опыты по использованию электромагнитных генераторов при электроосаждении металлов были начаты уже в 1840-х гг. Одним из первых практическое применение получил генератор, сконструированный И. Пикси в 1832 г. и усовершенствованный затем для целей гальванопластики Кларком, Пейджем, Молле и др. В 1842 г. Ж. С. Ульрих сконструировал специально для гальванопластики «магнитоэлектрическую машину». Но работа машины обходилась слишком дорого, и ее применяли недолго. Ф. К. Эльснер писал по этому поводу: «… подобный аппарат никогда не был в состоянии вытеснить гальванические батареи, простой аппарат с животным пузырем … В отношении наук способ этот очень любопытен, что же касается до практики, то не думаю, чтобы он мог войти во всеобщее употребление».
Широкое использование динамомашин в гальванотехнике началось на рубеже 1870–1880-х гг., и, хотя первые их модели имели много недостатков, особенно в конструкции коммутатора, это сразу увеличило масштабы и расширило области применения покрытий. Одной из них стало омеднение стальных телеграфных проводов.
Интересны данные о масштабах гальванического серебрения и об изменении цен на электроэнергию с введением динамомашин на одном из старейших (основано в 1842 г.) и наиболее крупных предприятий, специализировавшихся в области электроосаждения металлов,– фирме Кристофль и КО в Париже. Так, при работе с химическими элементами и с динамомашинами стоимость электроэнергии, необходимой для выделения 1 кг серебра, составляла соответственно 3,87 франка и 94 сантима соответственно, то есть снизилась примерно в 4 раза. При годичном потреблении серебра в Париже на начало 1880-х гг. около 25 т на долю только этой фирмы приходилось 6 т. Общее количество серебра, которое в тот же период расходовалось для этих же целей в Европе и США, по ориентировочным подсчетам, составляло ежегодно до 110 –120 т.
В конце XIX – начале XX вв. динамомашины были признаны неотъемлемой частью гальванического производства, и ведущие фирмы:
29-04-2015, 02:25