Гальванотехника и ее применение в микроэлектронике

Государственный Комитет Российской Федерации

по Высшему Образованию

Санкт-Петербургский

Государственный Электротехнический Университет «ЛЭТИ»

Кафедра Микроэлектроники

Реферат

«Гальванотехника

и ее Применение в Микроэлектронике»

Студент: Чапчаев В.В.

Факультет: РТ

Уч.группа: № 2142

Преподаватель: Марголин В.И.

Санкт – Петербург

2 0 0 3
Содержание

Введение ….………………………………………………………… 3
Электрохимическая обработка металлов ………………. 3
Электрохимическое обезжиривание …………………….. 4
Электрохимическое травление ……………………………. 4
Электрохимическое полирование ………………………… 5
Электрохимическое осаждение …………………………… 6
Нанесение на поверхность изделий металлических покрытий …………………………………………………………...

6

Меднение ……………………………………………………….. 7
Никелирование ………………………………………………… 8
Оловынирование ……………………………………………… 8
Серебрение ……………………………………………………… 8
Оборудование для нанесения гальванических покрытий ……………………………………………………………

9

Применение гальванотехники в микроэлектронике … 10
Удаление загрязнений с поверхности подложек ……… 10
Электрохимическое нанесение пленок ………………….. 13
Изготовление печатных плат электрохимическим методом ………………………………………………………………

16

Гальваническое меднение …………………………………… 17
Гальванические покрытия …………………………………… 19
Заключение …………………………………………………………. 22
Список литературы ……………………………………………… 23

Введение

Гальванотехника - процесс получения на поверхности изделия или основы (формы) слоев металлов из растворов их солей под действием постоянного электрического тока.

Электролитический или гальванический метод нанесения металлических покрытий был разработан в середине XIX века, но не сразу получил сколько-нибудь значительное промышленное применение – этому препятствовало отсутствие мощных источников постоянного тока.

Сущность метода заключается в погружении покрываемых изделий в водный раствор электролита, главным компонентом которого являются соли или другие растворимые соединения – металлопокрытия. Покрываемые изделия контактируют с отрицательным полюсом источника постоянного тока, т.е. являются катодами. Анодами обычно служат пластины или прутки из того металла, которыми покрывают изделия. Они контактируют с положительным полюсом источника постоянного тока и при прохождении электрического тока растворяются, компенсируя убыль ионов, разряжающихся на покрываемых изделиях.

Наряду с электрохимическим методом катодного осаждения металлов широкое применение находят и анодные методы электрохимической обработки поверхности металлов. К ним следует отнести электрохимическое оксидирование, травление, полирование и др. Во всех анодных процессах происходит либо растворение металла, либо превращение поверхностного слоя металла в оксидный или другой слой.

Электрохимическая обработка металлов.

Электрохимическая обработка это ряд методов, предназначенных для придания обрабатываемой металлической детали определенной формы, заданных размеров или свойств поверхностного слоя.

Электрохимическая обработка осуществляется в электролизерах (электролитических ваннах, электрохимических
ячейках специальных станков, установок), где обрабатываемая деталь является либо анодом )анодная обработка), либо катодом (катодная обработка), либо тем и другим попеременно.

Электрохимическое обезжиривание.

Электрохимическое обезжиривание (процесс удаления жиров и масел с поверхности изделия) может происходить на катоде, на аноде и может быть комбинированным – на катоде с последующим кратковременным переключением на анод.

Процесс электрохимического обезжиривания на катоде заключается в омылении жиров гидроксильными ионами, концентрация которых у катода бывает повышенной благодаря выделению газообразного водорода, способствующего механическому отрыву капелек жиров и масел.

При поляризации обрабатываемых изделий облегчается удаление с их поверхности жировых загрязнений: при увеличении поляризации уменьшается прочность прилипания масла к обрабатываемой поверхности и увеличивается смачиваемой металла водой.

Механизм процесса анодного обезжиривания аналогичен катодному, но скорость обезжиривания на аноде меньше, что объясняется меньшей щелочностью у анода и тем, что выделяющийся на аноде кислород слабее воздействует на обделение жиров и масел от поверхности изделий.

Электрохимическое травление

Электрохимическое травление (удаление с поверхности изделий различных окислов и продуктов коррозии) для очистки от загрязнений производят в растворах кислот, содержащих различные добавки (например, ингибитор коррозии), в щелочных растворах или расплавах при постоянном или переменном токе. Электрохимическое травление используют для осуществления электрохимического фрезерования с целью получения заданного «рисунка» на поверхности детали локальным анодным растворением металла. Места, которые не должны подвергаться растворению, покрывают слоем фоторезисторного материала . Таким образом можно произвести обработку деталей типа печатных плат, перфорирование, травление в декоративных целях.

Важная область использования электрохимического травления – развитие поверхности (увеличение удельной площади поверхности). Наиболее широкое применение имеет травление


алюминиевой фольги в хлоридных растворах для электролитических конденсаторов, этот процесс позволяет повы-

сить удельную поверхность в сотни раз и увеличить удельную емкость конденсаторов, уменьшить их размеры.

Развитие поверхности методом электрохимического травления применяют для улучшения адгезии металла по стеклу или керамике в электронной технике, усиления сцепления покрытия с металлом при эмалировании металлических изделий и др. Анодным травление снимают дефектные гальванические покрытия с деталей.

Электрохимическое полирование.

Электрохимическое полирование заключается в преимущественном анодном растворении выступов на шероховатой поверхности и приводит к достижению низкой шероховатости или зеркального блеска поверхности (глянцевание)

Выравнивание поверхности и ее глянцевание обусловлены двумя различными, но взаимосвязанными процессами:

1. Образованием на аноде относительного толстого вязкого слоя из продуктов растворения. Такой слой обуславливает выравнивание поверхности; на вершинах микровыступов поверхности он значительно тоньше, чем во впадинах, и сопротивление его во впадинах значительно выше,, чем на выступах, поэтому плотность тока на поверхности дна впадин будет меньше, чем на выступах. Этим объясняется преимущественное растворение микровыступов и сглаживание поверхности.

2. Образованием и удалением тонкой оксидной пленки, которая толще во впадинах и тоньше на микровыступах поверхности анода. При их устранении повышается оптическая гладкость поверхности и усиливается блеск.

Электролит для полирования должен быть устойчив к работе и обладать широким рабочим интервалом плотности тока и температуры. Он не должен разъедать поверхность полируемого изделия.

При электролитическом полировании меди, медных гальванических покрытий, латуни в качестве электролита используют 74% ортофосфорной кислоты, 6% хромового ангидрида, 20% воды при анодной плотности тока 30 – 50 а/дм2


и температуре электролита 20 - 40°С. Продолжительность обработки 1 – 3 мин.

Электрохимическое оксидирование

Электрохимическое оксидирование имеет две основные разновидности: получение барьерных тонких пленок (толщиной до мкм) и пористых толстых (до нескольких сотен мкм) анодных оксидных пленок.

Барьерные пленки получают в растворах электролитов типа H3 BO3 не растворяющих оксиды, обычно в два этапа. На первом этапе – в гальванических условиях; при этом напряжение увеличивается во времени, а толщина оксидной пленки пропорциональна количеству электричества. После достижения заданного напряжения режим изменяют на электростатический – ток снижается во времени, диэлектрические свойства оксидной пленки повышаются. Одна из наиболее важных областей применения барьерных оксидных пленок – получение диэлектрического слоя электролитических конденсаторов.

Пористые анодные оксидные пленки выращивают в агрессивных по отношению к оксиду электролитах, например, в 15%-ной H2 SO4 , при постоянном напряжении. Такие пленки состоят из двух слоев: тонкого барьерного и значительно более толстого пористого. Они широко применяются в качестве декоративно-защитных покрытий.

Нанесение на поверхность изделий металлических покрытий.

Нанесение на поверхность изделий тонких (до десятков мкм) металлических покрытий (гальваностегия) применяют для повышения коррозионной стойкости и износостойкости изделий, улучшения отражательной способности его поверхности, повышения электрической проводимости и магнитных характеристик, облегчения пайки, а также для декоративной отделки. Наиболее распространенные процессы – цинкование,


никелирование, меднение, хромирование, кадмирование, золочение, серебрение.

Меднение

Медные покрытия применяются в качестве подслоя при нанесении многослойных защитно-декоративных и многофунк-циональных покрытий на изделия из стали, цинковых и алюминиевых сплавов во многих отраслях промышленности; для улучшения пайки; для создания электропроводных слоев; для местной защиты стальных деталей при цементации, азотировании, борировании и других диффузионных процессах; в гальванопластике для наращивания толстых слоев при снятии металлических копий с художественных изделий.

Для меднения применяют как кислые так и щелочные электролиты.

В кислых электролитах медь находится в виде двухвалентных ионов. Используемые в промышленности кислые электролиты – сульфатные и фторборатные характеризуются высоким (95 – 100%) выходом по току и значительной скоростью осаждения. Недостаток кислых электролитов – получение из них покрытий с низкой рассеивающей способностью. Повышение рассеивающей способности достигается уменьшением в сульфатных электролитах концентрации CuSO4 и увеличением концентрации H2 SO4 . Такие электролиты, содержащие также органические добавки, применяют, например, для меднения печатных плат.

Щелочные электролиты дают возможность осаждать медь на сталь, цинковые и другие сплавы с менее электроположительным, чем у меди, стандартным потенциалом, т.к. образующиеся в растворах комплексные соли меди сдвигают ее потенциал к более отрицательных значением. Покрытия, осаждаемых из цианидных растворов, отличаются мелкозернистой структурой, они более равномерным слоем покрывают поверхность изделия.


Никелирование

Никелевые покрытия применяют в промышленности для защиты от коррозии изделий из стали и цветных металлов, для повышения износостойкости трущихся поверхностей. Никелевые

покрытия по отношению к железу являются катодными и могут служить защитными только при условии отсутствия в них пор. Поэтому сталь покрывают сначала слоем меди (25 –35 мкм), а затем никелем (10 – 15мкм). Наиболее широко применяют сульфатно-хлоридные электролиты. Из электролитов с добавками производных бутиндиола осаждаются мелкозернистые, эластичные, ровные блестящие покрытия. Основной недостаток покрытия малая коррозионная стойкость, обусловленная включениями серы. Избежать этого можно нанесением двух- или трехслойных покрытий.

Повышенной стойкостью отличаются композиционные никелевые покрытия, содержащие мелкодисперсные диэлектрические частицы – каолин, карбиды и др.

Оловянирование.

Оловянирование применяют для защитыизделий от коррозии в органических кислотах, содержащихся в пищевых продуктах. Покрытия улучшают электрическую проводимость и облегчают пайку контактов. Оловянирование производят в кислых (сульфатных, фтороборатных), а также щелочных (станнатных, пирофосфатных и др.) электролитах. Наиболее распространены сульфатные электролиты.

Серебрение.

Серебрение широко применяется в радиопромышленности, радиоэлектронике, производстве средств связи и ЭВМ для обеспечения высокой электрической проводимости контактов, покрытия внутренней поверхности волноводов, монтажной проволоки.


Для серебрения используют цианистые электролиты, отличающиеся хорошей рассеивающей способностью и высоким качеством осадков.

Оборудование для нанесения гальванических покрытий.

Для подготовки изделий к покрытию применяют в основном стационарные ванны.

Обезжиривают изделия в сварных прямоугольных ваннах, изготовленных из листовой стали. Ванны для обезжиривания в большинстве случаев снабжены подогревом и имеют специальные вентиляционные устройства. В ваннах предусмотрены специальные устройства «карманы» для удаления с поверхности раствора пены и масла.

Для травления меди и ее сплавов применяют керамиковые ванны, оборудованные вентиляционными устройствами.

Ванны для нанесения гальванических покрытий делают в основном из стали и в случае необходимости выкладывают внутри различными изоляционными материалами. Для кислых электролитов для внутренней обкладки применяется винипласт. Их используют для кислого цинкования, лужения, кадмирования, лужения, меднения, никелирования, осаждения сплава олово-свинец.

Для серебрения и золочения изготавливают фарфоровые, керамиковые или эмалированные ванны небольших размеров.

При интенсифицированном режиме большинство электролитов требуют подогрева, перемешивания и непрерывной фильтрации для чего ванны оборудуют соответствующими специальными устройствами: бортовым вентиляционным отсосом и электроподогревателями. Для перемешивания электролитов применяют сжатый воздух или механические мешалки, или движущиеся штанги. Для фильтрации применяют различные устройства периодического или непрерывного действия. При фильтрации электролит откачивается со дна ванны и пропускается через фильтр, затем снова попадает в ванну. Для


периодической фильтрации применяются передвижные фильтры, состоящие из насоса, фильтра, подающей и отводящей труб.

Для механизации процессов подготовки и наведения гальванических покрытий применяются полуавтоматические и автоматические ванны, также автоматизированные установки с программным обеспечением.

Все гальванические процессы протекают в основном под действием постоянного тока низкого напряжения. Для этого широко применяются выпрямители, создающие индивидуальное питание для каждой ванны (в соответствии с потребляемой силой тока).

Применение гальванотехники в микроэлектронике.

Удаление загрязнений с поверхности подложек.

Электрические характеристики интегральных микросхем (ИМС) и их надежность во многом обуславливаются степенью совершенства кристаллической решетки и чистотой обрабатываемой поверхности пластин и подложек. Поэтому обязательным условием получения бездефектных полупроводниковых и пленочных структур является отсутствие на поверхности пластин и подложек нарушенного слоя или каких-либо загрязнений.

В условиях производства ИМС пластины и подложки соприкасаются с различными средами, и полностью защитить их от адсорбции различного рода примесей невозможно. В тоже время получить идеально чистую поверхность (без посторонних примесей) тоже невозможно.

Для удаления загрязнений на поверхности и приповерхностном слое, в том числе тех, которые находятся в химической связи с материалом пластины или подложки, используют химические методы удаления. Они основаны на переводе путем химической реакции загрязнений в новые соединения, которые затем легко удаляются. Одним из таких методов является электрохимическое травление полупроводников.

Процесс травления пластин и подложек состоит в растворении их поверхности при взаимодействии с соответствующими химическими реагентами (щелочами, кислотами, их смесями и солями).

В соответствии с электрохимической теорией взаимодействие между полупроводником и травителем обусловлено тем, что на поверхности пластины при погружении ее в травитель существуют анодные и катодные микроучастки, между которыми возникают локальные токи. На анодных участках происходит окисление кремния с последующим растворением оксида и образованием кремний-фтористоводородной кислоты, на катодах – восстановление окислителя (азотной кислоты). В процессе травления микроаноды и микрокатоды непрерывно меняются местами. Результирующее уравнение реакции при этом имеет вид:

3Si + 4HNO3 + 18HF = 3H2 SiF6 + 4NO + 8H2 O

Для ряда травителей энергия активации химической реакции DЕа на порядок и более превышает энергию активации, определюящую скорость диффузии реагента. В этом случае скорость травления определяется скоростью химической реакции vр :

Vтр = vр ¥ (NA )a (NB )b exp(- DЕа /(RT),

где NA и NB - концентрации реагирующих веществ; R – универсальная газовая постоянная; a и b – показатели, численно равные коэффициентам в уравнении химической реакции.

Поскольку энергия активации химической реакции зависит от неоднородности поверхности, скорость травления чувствительна к состоянию поверхности. Так как различные кристаллографические поверхности структуры кремния имеют различно значение DЕа , то скорость травления зависит от ориентации пластин, а также от температуры.

В качестве селективных травителей (травители, для которых


контролирующей стадией является химическая реакция) пластин кремния используют водные растворы щелочей (например, NaOH, KOH) и гидразин гибрат (NH2 )2 H2 O.

Для селективных травителей характерная разница скоростей травления в различных кристаллографических

направлениях достигает одного порядка и более. Так, для щелочных травителей изменение скорости травления соответствует схеме (100) > (110) > (111).

Селективное травление используют для локальной обработки полупроводниковых пластин, в том числе для создания изолирующих областей при изготовлении ИМС.

Электрохимическое травление основано на химических превращениях, которые происходят при электролизе. Для этого полупроводниковую пластину (анод) и металлических электрод (катод) помещают в электролит, через который пропускают электрический ток. Процесс является окислительно-восстановительной реакцией, состоящей из анодного окисления (растворения) и катодного восстановления. Кинетика анодного растворения определяется концентрацией дырок, генерируемых на поверхности полупроводниковой пластины.

Электрохимическое травление кремниевых пластин производят в растворах, содержащих плавиковую кислоту, при возрастающей плотности тока. При этом вначале происходит образование на поверхности пластины слоя оксида кремния, в состав которого

входит фтористокремниевый комплекс SiF2 , окисляющийся в водных растворах с выделением водорода согласно реакции:

NSi + 2nHF ® (SiF2 )n + 2nH+ + 2ne-

(SiF2 )n + 2nH2 O ®nSiO2 + 2nHF­ + nH2 ­

Затем происходит анодное растворение оксида кремния в плавиковой кислоте:

SiO2 + 6HF ® H2 SiF6 + 2H2 O

Такой процесс называют также электрополировкой.

Для ускорения наименее медленных стадий процессов очистки с целью повышения качества очистки и производительности процессов применяют анодно-механическое травление. В основу анодно-механического травления положено электрохимическое травление, сопровождаемое механическим воздействием. Электролит подается на освещенные мощной лампой (для генерации дырок) пластины, которые предварительно закрепляются на аноде и


соприкасаются с вращающимся катодным диском, содержащим радиальные канавки. При этом скорость электрополировки достигает 400нм/с.

Электролитическое травление применяют как для очистки поверхности пластин, так и для их локальной обработки.

Электрохимическое нанесение пленок

В технологии микроэлектроники для получения пленочных покрытий с различными свойствами наряду с вакуумными применяют электрохимическое осаждение, анодное окисление. В основу метода положены реакции протекающие в водных растворах солей металлов в условиях приложенного электрического поля. В результате взаимодействия продуктов реакции с подложкой образуется пленка.

Электролитическое осаждение – осаждение пленок из водных растворов солей металлов (электролитов) под действием электрического тока, которое осуществляется в специальных электролитических ваннах, заполненных электролитом и содержащих два электрода: анод и катод.

При электроосаждении меди из раствора медного купороса в качестве анода используется медная пластина. С приложением к электродам разности потенциалов происходит разложение электролита на ионы. Под действием электрического тока, протекающего через раствор, находящиеся в растворе ионы металла, двигаясь к аноду, захватывают на нем электроны и, осаждаясь, превращаются в нейтральные атомы. Под действием тока ионы меди, достигая катода, отбирают два электрона, образуя нейтральные атомы, а на аноде атом меди отдает два электрона и переходит в раствор в виде положительного иона. Процесс описывается следующими уравнениями:

накатоде Cu2+ + SO4 2- + 2e = Cu0 ¯ + SO4 2- ;

нааноде Cu0 + SO4 2- = Cu2+ + SO4 2- + 2e.

Осаждение атомов металла начинается на дефектах структуры подложки, после этого они перемещаются вдоль поверхности к изломам, образуя пленку. Таким образом, пленка


развивается островками, которые разрастаются во всех направлениях, пока не сольются. Если вблизи зародыша концентрация электролита понижена (что имеет место в большинстве случаев), то условия благоприятны для роста пленки по нормали к поверхности.

Свойства осажденных пленок зависят от состава электролита, плотности тока, температуры, интенсивности перемешивания электролита, скорости дрейфа ионов металла, формы и состояния поверхности подложки.

Толщина пленки контролируется по значению тока и времени осаждения:

d = hgIt/gSп ;

где h - выход металла по току, g – электрохимический эквивалент, I – ток, протекающий через электролит, t – время, в течение которого осаждается металл, g - плотность пленки, Sп – площадь подложки.

Практически значение тока постоянно, а время осаждения – контролируемый параметр.

Методом электроосаждения получают пленки из различных металлов: меди, никеля, золота, серебра и др.

В тонкопленочной технологии микроэлектроники электроосаждение применяют для изготовления многослойных металлических масок, повышения проводимости внутрисхемных соединений, создания жестких и балочных выводов ИМС, золочения корпусов. Метод электроосаждения широко применяется также для получения тонких магнитных пленок, используемых в качестве элементов памяти.

Анодное окисление – взаимодействие химически активных металлов с ионами кислорода, выделяющимися у анода при электролизе с образованием оксидной пленки. Процесс анодного окисления, или анодирование,


29-04-2015, 04:01


Страницы: 1 2
Разделы сайта