Кислотно-основное равновесие

Министерство образования Российской Федерации

Пензенский Государственный Университет

Медицинский Институт

Кафедра Терапии

Реферат

на тему:

«Кислотно-основное равновесие»

Выполнила: студентка V курса

Проверил: к.м.н., доцент

Пенза

2008


ПЛАН

Введение

1. Механизмы поддержания КОС

2. Методика забора крови для исследования КОС и характеризующие его показатели

3. Нарушения КОС, их профилактика и коррекция

Литература


ВВЕДЕНИЕ

Кислотно-основное состояние (КОС) крови и других биологических жидкостей - один из важных компонентов гомеостаза организма, характеризующийся концентрацией водородных ионов [H+], которая зависят от соотношения между водородными и гидроксильными ионам, между кислотами и основаниями. Оно определяет стабильность протекания основных физиологических процессов в организме. Основные биохимические реакции в клетках и в их окружении достигают максимума при определенных значениях активной реакции среды. Концентрация иона Н+ [H+] поддерживается в очень узком диапазоне (36-43 нМоль/л, в среднем 40 нМоль/л или 0,00004 ммоль Н+/л). При выходе за пределы ниже 10 и выше 100 нМоль/л происходит необратимая денатурация белковых структур ферментов. Внутриклеточная концентрация [H+] в 4 раза выше внеклеточной. Концентрацию водородных ионов характеризует рН крови, который колеблется в пределах 7,35-7,45.


1. МЕХАНИЗМЫ ПОДДЕРЖАНИЯ КОС

В процессе метаболизма образуются кислые продукты: 1) летучие – СО2 около 15000 ммоль/сут (0,13 ммоль/кг * мин-1); 2) нелетучие - Н+ около 30-80 ммоль (1 ммоль/кг* сут-1); 3) молочная и пировиноградная (при окислении углеводов), серная, фосфорная, мочевая кислоты, аминокислоты (при окислении белков), β-оксимасляная, ацетоуксусная, жирные кислоты, кетокислоты (при окислении жиров).

Для своей защиты от них и поддержания постоянства КОС, организм использует системы быстрого реагирования – буферные системы и системы медленного реагирования - физиологические системы, связанные с дезинтоксикацией промежуточных и выделением конечных продуктов обмена.

Основными буферными системами крови являются: 1) гемоглобиновая – KHb / HHb (35-76% буферной емкости); 2) карбонатная – NaHCO3 / H2CO3 (13-35% буферной емкости); 3) белковая – Вбелок / Нбелок (7-10% буферной емкости); 4) фосфатная – NaHPO4 / NaH2PO4 (1-5% буферной емкости).

Они представлены в виде слабой кислоты и солью этой кислоты. Основными буферными системами являются: в клетках – белковая и фосфатная, во внеклеточном пространстве – карбонатная. Гемоглобиновая буферная система активна как в клеточном, так и во внеклеточном пространстве.

Буферные системы крови, представляя только 1/5 общей буферной емкости организма, при дистрессе не могут поддерживать КОС на нормальном уровне. Поэтому при истощении буферных систем для поддержания КОС начинают активизироваться физиологические системы медленного реагирования: 1) легкие (удаление или задержка СО2); 2) почки (выделение Н+ или НСО3- , реабсорбция НСО3-); 3) печень (нейтрализация окислением); 4) желудочно-кишечный тракт – ЖКТ (выделение Н+, НСО3-) и др.

В историческом аспекте оценку КОС осуществляли различными способами в зависимости от применяемых технических средств, технологий и концепций.

Сначала ее проводили с помощью уравнения Гендерсона-Гессельбаха (Henderson-Hasselbalch):

рН = logКа + log [Н2 СО3] / [НСО3-] = 6,1 + log 25,0/1,25.= 6,1 + 1,3 = 7,4

где: logКа - логарифм константы диссоциации угольной кислоты при 380С.

Затем датский ученый О. Зигаард-Андерсон (Sigaard-Andersen) сформулировал оперативный метод контроля КОС циркулирующей крови на основании определения рН в пробах крови, насыщенных двумя кислородно-углекислыми смесями (обычно с концентрацией СО2 около 4% и 8%) и актуального значения рН данного образца крови.

К концу 50-х годов прошедшего столетия глава центральной больничной лаборатории в Копенгагене Пол Аструп (Paul Astrup) ввел в практику быстродействующие рН-метры фирмы Radiometer, получившие название Astrup MicroEguipment (микрометод Аструпа). Определив три величины рН в одной пробе и построив график на специальной номограмме Зигаарда-Андерсена, можно получить истинную концентрацию аниона гидрокарбоната (АВ) в плазме крови и производные показатели: сумму буферных оснований (ВВ), избыток оснований (ВЕ), стандартный бикарбонат (SB).

В 1954 г. американский физиолог Ричард Сноу (R. Snow) сообщил о создании полярографического электрода для прямого измерения РСО2, который был усовершенствован в 1958 г. американским анестезиологом и инженером Джоном Северингхаусом (J. Severinghause). О. Зигаард-Андерсен разработал другую линейную номограмму, с помощью которой, проведя прямое определение рН и РСО2, можно определить показатели КОС. В дальнейшем, используя компьютерную технику, можно было получить показатели КОС, исключив не только эквилибрирование крови эталонными газовыми смесями, но и номограммы.

В 1956 г. американский биохимик и физиолог Л.С. Кларк (L. Clark) разработал полярографический электрод для определения РО2. К 1960 г. появились первые приборы для клинического мониторинга газов крови и КОС.

В 70-е годы внедрены в практику оптодные технологии измерения и регистрации рН, РСО2 и РО2. Высокая точность измерения и небольшой диаметр датчика позволяла вводить его в сосудистое русло и получать непрерывную информацию о КОС.

В начале 80-х годов Питер Стюарт (P.A. Stewart) опубликовал новую концепцию КОС с изложением физико-химического подхода к его физиологии. Она предпочтительна в современной клинической физиологии, так как ни избыток оснований, ни концентрация бикарбоната в плазме крови, в том числе и стандартного, не всегда могут объяснить природу нарушений КОС у больного. Концепция Стюарта позволяет выявить причины многих расстройств КОС и более рационально подойти к их устранению. Согласно этой концепции, все водные растворы в организме человека представляют собой неистощаемый источник Н+. В этих растворах [Н+] определяется диссоциацией воды на Н+ и ОН- ионы. Данный процесс происходит в соответствии с законами физической химии: электронейтральностью (сумма всех положительно заряженных ионов равна сумме отрицательно заряженных ионов) и сохранению масс (количество вещества в данном растворе остается постоянным, если оно не добавляется или производится, не удаляется или разрушается).

В норме в плазме существует равновесие между катионами (Na+, K+, Ca++, Mg++) и анионами (Cl -, НСО3-, белки, остаточные анионы). Оно равно 153 ммоль/л и представлено в диаграмме Гэмбла. При истощении бикарбонатных буферных оснований их место занимают органические кислоты, в результате чего создается несоответствие между концентрацией Na+ и суммой НСО3- и Cl-. Появляется так называемый анионный интервал (АИ). В норме он составляет 12.4 ммоль/л.

Сущность подхода Стюарта заключается в том, что в плазме величина концентрации ионов водорода (формирование КОС) зависит от 3-х переменных величин: а) РСИ -разницы концентрации сильных ионов (между суммой концентрации Na+, K+, Ca++, Mg++ с одной стороны, и Cl- + лактат, с другой); б) РаСО2; в) Аобщ – общей концентрации недиссоциированных (АН+). и диссоциированных (А-) слабых кислот.

Содержание Н+ и НСО3- меняется лишь при изменении одного из этих трех показателей. Поэтому для того чтобы узнать, как организм регулирует рН, необходимо представлять, чем обусловлен их сдвиг.

Например, у больного со стенозом привратника вследствие потери с желудочным содержимым соляной кислоты (HCl) развивается гипохлоремический метаболический алкалоз иногда с выраженной клинической симптоматикой. Увеличение РСИ происходит вследствие потери такого сильного аниона как Cl-, без значимой потери сильного катиона. Когда ион водорода теряется как вода (НОН), а не как HCl-, изменений в РСИ не будет, и поэтому не измениться [H+]. Для коррекции алкалоза предпочтительно введение хлористо-водородной кислоты в растворе. На фоне алкалоза большое количество калия переходит в клетки, оставляя значительную часть Cl- в плазме крови, что приводит к значительному снижению РСИ. Раствор Рингер-лактата более физиологичен, чем 0,9% NaCl, так как РСИ их соответственно равны 28 и 0 мэкв/л.


2. МЕТОДИКА ЗАБОРА КРОВИ ДЛЯ ИССЛЕДОВАНИЯ КОС И ХАРАКТЕРИЗУЮЩИЕ ЕГО ПОКАЗАТЕЛИ

Кровь должна забираться из артерии при оценке газообмена в легких и дополнительно из вены - в случае наличия нарушения транспорта газов кровью и (или) тканевого газообмена. Игла и шприц для забора крови должны быть гепаринизированы, не должно быть контакта крови с воздухом. Кровь должны исследовать сразу же после забора. Если это невозможно, она должна помещаться в ледяную воду и исследовать ее нужно не позже, чем через 30 мин.

Для оценки КОС чаще всего используют следующие показатели:

рН - это обратный десятичный логарифм концентрации водородных ионов. Этот показатель изменяется при наличии декомпенсированных нарушений КОС и может свидетельствовать только о сдвигах в сторону ацидоза или алкалоза. В норме рНа находится в пределах 7,35-7,45; рНv - 7,32-7,42; рН внутриклеточный = 6,8-7,0. Границы колебаний рНа, совместимые с жизнью - 6,8-8,0.

ВЕecf – избыток или дефицит оснований, т.е. расчетное количество ммоль НСО3-, которое необходимо ввести в каждый литр внеклеточной жидкости или вытеснить из нее кислотой для нормализации КОС. Этот компонент КОС свидетельствует о недыхательных нарушениях КОС или о компенсаторных изменениях его при дыхательных расстройствах. В норме ВЕecf = ± 2,3 мМ/л. Пределы колебаний, совместимые с жизнью, ± 15мМ/л.

РаСО2 (PvCO2) - дыхательный компонент КОС, свидетельствует о дыхательных нарушениях КОС или о компенсаторных изменениях этого показателя при недыхательных расстройствах. В норме этот показатель в артериальной крови составляет 35-45 мм рт. ст. (4,7-6,0 кПа), при совместимых с жизнью колебаниями от 10 до 150 мм рт. ст. (1,3 - 20,3 кПа). Уменьшение РаСО2 менее 35 мм рт. ст. свидетельствует о гипокапнии вследствие гипервентиляции, которая приводит к дыхательному алкалозу. Увеличение РаСО2 выше 45 мм рт. ст. наблюдается при гиповентиляции, гиперкапния приводит к дыхательному ацидозу.

ВВ – концентрация оснований всех буферных систем крови (в норме – 40-60 мМ/л).

SB – стандартный бикарбонат – концентрация аниона гидрокарбоната в плазме крови при 100% насыщении гемоглобина данной пробы крови кислородом, температуре ее 38оС и напряжении СО2 в ней 40 мм рт. ст. (5.32 кРа). Этот показатель позволяет дифференцировать дыхательные и недыхательные расстройства. Он в норме равен 20-27 (средн. 24) мМ/л.

АВ – истинные бикарбонаты, содержание НСО3- в плазме крови (19-23 мМ/л).

ТСО2 – общая углекислота крови (10,5-13,0 мМ/л).

В настоящее время, исходя из концепции КОС Стюарта и имея современные газоанализаторы, для более точного определения причины и патогенеза нарушений целесообразно наряду с клиническими данными определять степень изменения РСИ, РаСО2 и Аобщ.

РСИ у здоровых людей составляет 40-42 ммоль/л и ее можно узнать при упрощенном расчете: РСИ= [Na+] - [Cl-]. Снижение до 30 ммоль/л свидетельствует о развитии недыхательного ацидоза, а увеличение более 50 ммоль/л – о недыхательном сдвиге в сторону алкалоза. Существует строгая корреляция между РСИ и ВЕ в крови пациентов ОРИТ.

Концентрация диссоциированных слабых кислот (А-), представленных в плазме крови ее белками и фосфатами, меняется с изменением РСИ, РСО2 и Аобщ.

3. НАРУШЕНИЯ КОС, ИХ ПРОФИЛАКТИКА И КОРРЕКЦИЯ

Различают два вида нарушений КОС (табл.1): недыхательные (ацидоз или алкалоз – патологическое состояние при котором первично увеличивается дефицит или избыток оснований, что приводит к изменению показателя ВЕecf и рН в сторону ацидемии или алкалемии) и дыхательные (ацидоз или алкалоз с первичным увеличением или снижением РаСО2). При диагностике нарушений КОС необходимо оценивать степень тяжести расстройств и компенсаторных изменений.

Могут быть более сложные нарушения КОС: однонаправленные (дыхательный и недыхательный ацидоз или алкалоз) и разнонаправленные, противоположные (дыхательный ацидоз и недыхательный алкалоз, дыхательный алкалоз и недыхательный ацидоз). В их диагностике важное значение имеют знание анамнеза и сущности патологического процесса, клиника заболевания в сопоставлении с данными КОС, водно-электролитного обмена и показателями газообмена.

Профилактика нарушений КОС во время анестезии и интенсивной терапии осуществляется поддержанием адекватного кровообращения (общего и микроциркуляции) и вентиляции легких в режиме нормовентиляции (FetCO2 = 4,9 – 6,4 об%), обеспечением достаточной оксигенации (SaO2 = 94-100 об%), предупреждением нарушений метаболизма.

Интенсивная терапия больных с нарушением КОС должна, прежде всего, предусматривать устранение функциональных и метаболических расстройств как проявлений основного заболевания, устранение критического состояния. При отсутствии эффекта и тяжелых нарушениях, проводится коррекция КОС.


Таблица 1

Характер нарушений КОС

Нарушения КОС Показатели КОС
pH РаСО2 ВЕecf

Недыхательный ацидоз:

умеренный

выраженный

тяжелый:

декомпенсированный

частично компенсированный

компенсированный

7.20

7.21-7.29

7.35

40

34-28

20

-2.5 - -5.2

-5.3- -7.5

-7.6 и <

-7.6

-7.6

-7.6

Недыхательный алкалоз:

умеренный

выраженный

тяжелый:

декомпенсированный

частично компенсированный

компенсированный

7.59

7.53-7.49

7.45

40

46-50

60

+2.5 - +6.5

+6.6 - +12

+12.1 и >

+12.1

+12.1

+12.1

Недыхательный алкалоз:

умеренный

выраженный

тяжелый:

декомпенсированный

частично компенсированный

компенсированный

7.59

7.53-7.49

7.45

40

46-50

60

+2.5 - +6.5

+6.6 - +12

+12.1 и >

+12.1

+12.1

+12.1

Дыхательный ацидоз:

умеренный

выраженный

тяжелый:

декомпенсированный

частично компенсированный

компенсированный

7.20

7.29-7.21

7.35

7.20

7.29-7.21

7.35

46-50

51-60

61 и >

61

61

61

Дыхательный алкалоз:

умеренный

выраженный

тяжелый:

декомпенсированный

частично компенсированный

компенсированный

7.59

7.53-7.49

7.45

-2.3

-2.5 - -5.2

-7.5

34-28

27-20

19 и <

19

19

19


Ацидоз недыхательный может быть метаболическим, выделительным и экзогенным. Он характеризуется снижением НСО3- и возрастанием дефицита оснований (Becf > - 2,3 мМ/л). Данный вид ацидоза может быть вследствие: 1) вытеснения (титрации) бикарбоната различными эндогенными органическими кислотами, например, кетокислотами при диабете, алкоголизме или голодании, молочной кислотой при гипоксии; 2) уменьшения НСО3- в организме (диарея, фистулы кишечника и желчного пузыря, язвенный колит, хроническая почечная недостаточность, прием соляной кислоты и хлорида аммония), что приводит к уменьшению катионо-анионного градиента [(Na+ + K +) _ (Cl- + НСО3-)] к уровню менее 12 мМ/л (в норме = 20); 3) поступления нелетучих кислых веществ (отравление экзогенными кислотами: салицилатами, метанолом, этиленгликолем).

При развитии недыхательного ацидоза включаются компенсаторные механизмы. Сильная кислота при реакции с бикарбонатом переходит в слабую угольную кислоту. Угольная кислота возбуждает дыхательный центр и продукты ее диссоциации выводятся легкими (СО2) и почками (Н2О). При отсутствии патологии со стороны почек общая экскреция H+ и синтез НСО3- могут увеличиться в 10 раз.

По мнению многих исследователей, при метаболическом ацидозе обязательно имеется анионное несоответствие, возникает анионный интервал между концентрацией катиона Na+ и суммой анионов Cl-, HCO3-. Его можно определить по формуле:

АИ = Na+пл – (Cl-пл + HCO3-).

В норме АИ (анионный интервал) равен 12±4 мМ/л. При недыхательном ацидозе (за исключением солянокислого) АИ увеличивается вследствие использования буферных систем крови для нейтрализации кислых продуктов.

При недыхательном ацидозе развиваются следующие патофизиологические реакции: увеличение содержания H+ в клетках и развитие внутриклеточного ацидоза, компенсаторной гипервентиляции, повышенное удаление H+ почками (при рН < 7,25 реакция мочи становится кислой), частая рвота (удаление H+ с желудочным содержимым), смещение кривой диссоциации оксигемоглобина вправо с облегчением отдачи тканям кислорода, катаболизм и распад клеток, выход К+ из клеток и повышение его в крови, активация симпато-адреналовой системы и выброс катехоламинов с последующим нарушением функции сердечно-сосудистой системы.

Клинически недыхательный ацидоз может проявляться нарушением гемодинамики и микроциркуляции, учащением дыхания, гипертермией, олигурией или анурией, адинамией.

Диагностику недыхательного ацидоза осуществляют на основании данных анамнеза, клинической картины и лабораторных исследований КОС (ВЕ < - 2,5; АВ < 19, ВВ < 40, SB < 20, рН < 7,35). Чаще всего развивается метаболический ацидоз вследствие накопления в организме продуктов обмена. Различают при этом лактат ацидоз 2-х типов: типа А (классический) у больных с пониженной перфузией тканей и выраженной гипоксией и типа В, у больных с выраженными метаболическими нарушениями (сахарный диабет, инфекционные болезни, почечно-печеночная недостаточность и пр.) и некоторых отравлениях (салицилатами, этиленгликолем, метанолом, антифризом и др.).

Лактат – сильный ион, при нормальном рН он полностью диссоциирован, так как организм быстро его продуцирует и поглощает. У больных, находящихся в критическом состоянии, уровень гиперлататемии значительно выше, чем уровень ацидоза.

Лактат может быть повышен (более 2-4 мМ/л), а [H+] нет. Это объясняется тем, что при интенсивной терапии к плазме добавляется не молочная кислота, а соль сильной кислоты: сильный катион Na+ вместе с сильным лактатным анионом. Лактат потребляется под влиянием клеточного метаболизма и остающийся ион натрия повышает РСИ. При нормальном системном метаболизме суточный оборот лактата равен 1500-4500 ммоль. Второй механизм коррекции РСИ и нормализации рН при гиперлактатемии – это перемещение сильного аниона Cl- из плазмы крови в клетки. Основным источником лактата являются легкие, особенно при остром легочном повреждении. По мнению N.P. Day и соавт. (1996), гиперлактатемия при сепсисе возникает скорее вследствие повышенного аэробного метаболизма, чем тканевой гипоксии или угнетения активности пируватдегидрогеназы.

При диагностике ацидоза важно определить причину, степень тяжести первичных нарушений и компенсаторных изменений. Количественное преобладание цифровых значений первичных нарушений над компенсаторными изменениями позволяет правильно оценить КОС.

Интенсивная терапия больных с недыхательным ацидозом должна предусматривать патогенетическое лечение больного, устранение причины, вызвавшей развитие ацидоза (при успешном лечении органические кислоты постепенно метаболизируются и (или) экскретируются, ацидоз исчезает).

Если причину не удается устранить, тяжелый ацидоз нужно корригировать введением оснований: 4,2% или 8,4 % раствора натрия гидрокарбоната (в 1 мл раствора 1 мМ оснований), или лактата натрия (в 1 мл 11 % раствора 1 мМ оснований), или 3,6% раствора трисамина, THAM (в 1 мл 3,6% раствора содержится 0,3 мМ оснований). Расчет дозы основания производят по формуле:

ДБС = F * масса тела (кг) * ∆Веecf,

где: ДБС - дефицит буферных систем, мМ оснований;

F – объем внеклеточной жидкости, л/кг, он равен 0,2;

∆ВEecf – разница между истинным и нормальным значением ВЕ.

Не следует дефицит оснований корригировать полностью. Если причина ацидоза определена и может быть контролируема, то во введении оснований нередко нет необходимости.

Срок годности натрия гидрокарбоната - 1-3 суток, а при добавлении стабилизатора (0,3 мл трилона Б на 1 мл


8-09-2015, 19:57


Страницы: 1 2
Разделы сайта