Сравнительная характеристика вестибулярного анализатора у детей, занимающихся и не занимающихся спортом

КУРСОВАЯ РАБОТА

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ВЕСТИБУЛЯРНОГО АНАЛИЗАТОРА У ДЕТЕЙ, ЗАНИМАЮЩИХСЯ И НЕ ЗАНИМАЮЩИХСЯ СПОРТОМ


Содержание

Введение

Глава I. Вестибулярный анализатор

1.1 Структурная организация вестибулярного анализатора

1.2 Понятие об адекватности вестибулярного раздражителя

1.3 Распределение возбудительного процесса в центральных отделах вестибулярной системы

1.4 Влияние утомления вестибулярного анализатора на вестибулярные последовательные образы

1.5 Роль вестибулярного анализатора в жизни человека

Глава II. Исследование вестибулярного анализатора у детей, не занимающихся и занимающихся фигурным катанием

2.1 Цели и задачи исследования

2.2 Методы исследования

2.3 Результаты исследования

Глава III. Обсуждение полученных результатов исследования

3.1 Обсуждение результатов тестирования детей, занимающимися фигурным катанием

3.2 Обсуждение результатов тестирования детей, не занимающимися фигурным катанием

3.3 Сравнение полученных результатов

Вывод

Список литературы

Введение

Сложные акты поведения человека во внешней среде требуют постоянного анализа окружающего мира, а также осведомленности нервных центров о состоянии внутренних органов. Специальные нервные аппараты, служащие для анализа внешних и внутренних раздражений, И.П. Павлов назвал анализаторами. Современное представление об анализаторах как сложных многоуровневых системах, передающих информацию от рецепторов к коре и включающих регулирующее влияние коры на рецепторы и нижележащие центры, привело к появлению более общего понятия сенсорные системы. Одна из таких сенсорных систем называется вестибулярный анализатор. Вестибулярная сенсорная система служит для анализа положения и движения тела в пространстве. Это одна из древнейших сенсорных систем, развившаяся в условиях действия силы тяжести на земле. Импульсы вестибулярного аппарата используются в организме для поддержания равновесия тела, для регуляции и сохранения позы, для пространственной организации движений человека. (А.С.Солодков, Е.Б.Сологуб,2001) Под контролем вестибулярного анализатора находятся почти все скелетные мышцы. Координация движений – очень сложный процесс. Раздражение с органа равновесия, расположенного во внутреннем ухе, передается в мозжечок, а оттуда поступает к мышцам скелета. (Руководство к практическим занятиям по нормальной физиологии, 2002)

Вот почему такое важное значение имеет вестибулярный анализатор в жизни человека.


Глава I. Вестибулярный анализатор

1.1 Структурная организация вестибулярного анализатора

Вестибулярный анализатор – парный симметричный орган, составляющий часть внутреннего уха и состоящий из трех полукружных каналов и преддверия. Внутри костного футляра полукружных каналов и преддверия на соединительнотканных перемычках подвешен перепончатый лабиринт, снаружи омываемый перилимфой, внутри – эндолимфой. Симметричность топографо-анатомической локализации полукружных каналов и преддверия и их закономерные соотношения между различными ориентационными системами головы, по-видимому, имеет определенный функциональный смысл.В процессе эволюционного развития все десантные анализаторы, принимающие участие в ориентации организма в среде, были "размещены" в голове. Выгода такого рода конструкции очевидна. Так, при движении головы потки информации, поступающие к зрительному и вестибулярному анализаторам, являются потоками информации одного порядка и легко могут быть сравнимы между собой.Анализ особенностей топографической локализации лабиринтов в черепе позволил Б.П.Симченко и соавторам (1971) высказать оригинальную концепцию об анатомо-физиологическом центре черепа и центральной нервной системы человека, объединяющую понятия стереотаксис, кинематика, анатомия, физиология.На основании данных специальных измерений авторы нашли, что оба лабиринта ориентированы относительно окципито-атлантного и атланто-эпистрофейного суставов совершенно определенным образов; это обстоятельство дает возможность вестибулярному анализатору дифференцировать относительное вращение головы от относительно поступательного или чисто поступательного движения. Таким образом, особенностью топографии лабиринтов является их строго симметричная локализация относительно трех главных осей вращения головы, лежащих в трех координатных плоскостях пространства. Такая локализация обеспечивает вестибулярному анализатору точность количественной оценки движения и разностных составляющих этого движения при различных его формах. (А.Е. Курашвили, 1975)Вестибулярный аппарат внутреннего уха доставляет информацию о положении организма в пространстве. Раздражителями статоцистных рецепторов вестибулярного аппарата являются ускорение или замедление прямолинейных движений тела, а также гравитационное поле Земли. Статоцистные органы воспринимают начало и конец равномерного прямолинейного движения, прямолинейное ускорение или замедление, изменение силы тяжести и центробежной силы. Эти восприятия обусловлены тем, что постоянное давление статолитов и эндолимфы на рецепторные "пятнышки", где возникают афферентные импульсы. (М.П.Могендович,1971) Органом, воспринимающим направление силы тяжести и прямолинейное движение, является отолитовый аппарат, расположенный в преддверии лабиринта. У позвоночных он состоит из двух перепончатых мешочков. Один из них – утрикулюс – расположен в горизонтальной плоскости, другой – саккулюс – в сагиттальной. В каждом мешочке находятся рецепторные образования, сохранившие до сих пор старое название слуховых пятен (macula acustica): на дне утрикулюса лежит утрикулярная макула, на медиальной стенке саккулюса расположена саккулярная макула. Слуховое пятно – представляет собой образование, состоящее из чувствительного эпителия, сверху покрытого отолитовой мембраной. Она образована тесно переплетающимися фибриллами и напоминает войлок, пропитанный студенистой массой. Нижняя поверхность отолитовой мембраны снабжена фибриллярными выростами и длинными пластинчатыми выпячиваниями. Волоски рецепторных клеток располагаются в подмембранном пространстве, но остается неясным – каким образом отолитовая мембрана удерживается в определенном положении над поверхностью рецепторного эпителия. Допускается, что ее края образуют неправильные выросты, которые присоединяются к индифферентному эпителию, окружающему macula acustica. Верхняя поверхность отолитовой мембраны утрикулюса млекопитающих усеяна множеством мелких кристаллов – отоконий, рыхло связанных в общую массу тонкими прослойками органического геля, но не спаянных прочно с самой мембраной. Удельный вес отоконий – 2,93-2,95. химический состав отоконий варьирует в зависимости от вида животного. У млекопитающих, в том числе и у человека, отоконии состоят из чистого кальцита, у амфибий и рыб – из арагонита, а у круглоротых - из фосфата кальция.Как указывает Я.А. Винников с соавторами (1971), у млекопитающих отоконии проецируются на поверхность макулы неравномерно и в совокупности образуют конгломерат определенной формы, напоминающий лошадиную подкову.При перемещениях головы и туловища возникают тонические рефлексы, восстанавливающие исходное положение. При надавливании отолита "овального мешочка" на воспринимающие волосковые клетки вестибулярного нерва повышается тонус сгибателей шеи, конечностей и туловища и понижается тонус разгибателей; при отставании отолита, наоборот, понижается тонус сгибателей и повышается тонус разгибателей. Таким образом, регулируется движение туловища вперед и назад. Отолитовый прибор "круглового мешочка" регулирует наклоны тела в стороны и участвует в установочных рефлексах, так как увеличивает тонус отводящих мышц – на противоположной стороне (Магнус – Magnus, 1924). Система тонических рефлексов делится на две большие группы: безусловных рефлексов статических и статокинетических. Первая группа состоит из рефлексов, направленных на удержание и восстановление обычной позы. Вторую образуют рефлексы, возникающие при активном и пассивном перемещении тела и способствующие сохранению нормального положения тела в процессе движения.Порог различения ускорения вестибулярным анализатора при прямолинейном движении 2 – 20 см/сек; порог различения степени наклона тела вперед и назад при закрытых глазах около 1,5 – 2,0 град; в стороны – около 1 град(1град =0,0174 рад). Этот порог значительно повышается при вибрациях. Например, при полетах на самолете порог различения вперед и назад достигает 5 град., а в стороны – 10 град. и даже до 20 град. способность различения наклонов тела не может быть приписана лишь функции вестибулярного анализатора. Глухонемые, у которых этот анализатор не функционирует, также сохраняют способность при закрытых глазах определять наклон, так как основную роль в осуществлении этого вида ориентировки в пространстве играют проприорецепторы и рецепторы кожи области седалища и внутренней поверхности бедер. (И.Б. Темкин, 1971)Другой частью вестибулярного анализатора является система полукружных каналов. Перепончатый лабиринт каждого канала в своем преддверном отделе заканчивается булавовидным расширением – ампулой, в которой располагаются гребешки, представляющие собой скопление рецепторных клеток на складках мезодермы, занимающих около одно трети просвета ампулы. Каждая одноименная пара полукружных каналов (всего три таких пары), образованная боковыми (горизонтальными), верхними (фронтальными), задними (сагиттальными) каналами, располагается примерно в одной плоскости. Это, однако, не означает, что каналы каждой из пар являются синергистами. Взаимодействие каналов определяется условиями стимуляции.Инерциальной массой полукружного канала является заключенная в перепончатом канале эндолимфы, которая, смещаясь при вращении головы, оказывает механическое воздействие на купулу. Последняя образует одно целое с волосками чувствительных клеток. Интактная купула – совершенно прозрачное образование с ничтожной массой (Л.К. Титова, 1968). Наблюдения за живыми препаратами показали, что купула занимает все пространство между чувствительным эпителием и крышей ампулы. Коэффициент плотности эндолимфы относительно воды составляет 1,02 – 1,04; она резко отличается по своему химическому составу от перилимфы (содержит в 30 раз больше ионов калия и в 10 раз меньше ионов натрия).Раздражение ампулярных рецепторов происходит при смещении эндолимфы, которая по закону инерции приходит в относительное движение во время вращения головы. Поскольку рецепторы своим основанием жестко связаны с основной массой головы, а волоски являются составной частью подвижной купулы, то при смещении ее происходит деформация этих волосков и вследствие этого возникает возбуждение рецепторов.

1.2 Понятие об адекватности вестибулярного раздражителя

Вестибулярный аппарат, будучи связанным с соответственно организованной нервной системой, дает животному не только информацию о его статическом положении в пространстве, но и сведения о параметрах его движения. Снабженный системой рецепторов, вестибулярный аппарат в нормальных условиях реагирует при действии на него адекватного раздражителя. Точное определение адекватного раздражителя вестибулярного аппарата дал В.И. Воячек (1941): "адекватным раздражителем вестибулярного аппарата являются:1) новые механические силы, начинающие действовать на наше тело, и 2) перемена направления прежних, уже действовавших сил (что однородно).. какой бы вид движения или статических перемещений тела мы ни рассматривали, выходит так, что во всех случаях исходным моментом нужно считать внешнюю силу, измеряемую тем или иным сообщаемым ускорением". (В.И.Воячек .Военная отоларинтология.,1941). Следовательно, в качестве адекватного раздражителя вестибулярного анализатора В.И. Воячек рассматривал единый фактор – механическую силу, от параметров которой зависят различные ее производные – направление, ускорение, скорость, путь, которые сами по себе не могут являться раздражителями, то есть носителями энергии.Поскольку установлено, что любое адекватное для вестибулярного аппарата воздействие трансформируется внутри лабиринта в тангенциальное смещение инерциальных структур крист или макул, то это смещение можно рассматривать в качестве связующего звена между внешним воздействием и ответной физиологической реакцией, а его параметры – информацией, определяющей свойства реакции. Иначе говоря, вестибулярный аппарат выделяет в адекватном раздражителе для дальнейшего его анализа ряд параметров и, прежде всего такие, как направленность действия силы, ее величина и время действия. Фактор направленности является универсальной характеристикой адекватного раздражителя вестибулярного анализатора, информация о которой учитывается всеми звеньями сенсомоторной системы – от инерциальных систем датчика (эндолимфа в полукружных каналах, отолиты в мешочках преддверия) до ответных моторных реакций. Количественный показатель, выраженный величиной силы ответной реакции, которая должна компенсировать возмущающий эффект внешней силы. Согласно В.И. Воячеку, адекватный раздражитель вестибулярного аппарата может быть статическим и динамическим. В связи с этим, и рецепторы вестибулярного аппарата могут быть разделены на гравитационные (статические) и инерциальные (динамические).Деформация волоскового аппарата рецепторов при действии на организм ускорений становится возможной благодаря тому, что его волоски связаны с так называемой "пробной массой" (отолиты или купуло-эндолимфатический аппарат). В покое отолиты испытывают действие только силы земного притяжения, которое пропорционально ускорению свободного падения тела. В этом случае их вес, определяемый как гравитационная масса, деформирует гравитационные рецепторы с силой, пропорциональной этой массе. При действии на тело внешней механической силы, вызвавшей его движение, в последнее вовлекается и жестко фиксированное основание рецепторного эпителия, а свободные волоски, заключенные в "пробной массе", следуют ее относительному (инерционному) смещению. Таким образом, "пробная масса", определяемая в этом случае как инерциальная масса, деформирует волосковый аппарат рецепторных клеток крист или макул. Поскольку в количественном отношении гравитационная масса и инерциальная масса идентичны, то, как отмечает Я.А. Винников и соавт. (1971), в определенных условиях стимуляции при движении можно добиться такого отклонения отолита, как при статическом наклоне.Итак, лабиринтную часть вестибулярного анализатора можно рассматривать как инерциально-гравитационный датчик, действующий по общеизвестным законам механики. Конструктивные особенности датчика обеспечивают выделение из сложного движения элементарных его составляющих и их анализ системой поляризованных рецепторов. (А.Е. Курашвили, В.И. Бабияк,1975).

1.3 Распределение возбудительного процесса в центральных отделах вестибулярной системы

Импульсы, возникающие при раздражении периферического вестибулярного рецептора в полукружных каналах и мешочках преддверия, передаются через дендриты, окружающие волосковые клетки, и доходят до ganglion vestibulare Scarpae, лежащего во внутреннем слуховом проходе. Клетки этого узла – биполярные. Их аксоны вместе с волокнами кохлеарной ветви образуют ствол 8 нерва. По выходе из внутреннего слухового прохода 8 нерв направляется к продолговатому мозгу, где снова делится на две ветви – кохлеарную и вестибулярную. Вестибулярный нерв является медиальным корешком. Вступив в продолговатый мозг в мостомозжечковом углу, вестибулярный нерв делится на две ветви – восходящую и нисходящую, - которые заканчиваются в системе вестибулярных ядер.По современным воззрениям, вестибулярные ядра представляют собой комплекс различных филогенетических образований. Различают следующие ядра: медиальное (Швальбе), латеральное (Дейтерса), верхнее (Бехтерева), нисходящее (Роллера и Монакова).Вестибулярные ядра при посредстве волокон вступают в связь с целым рядом образований центральной нервной системы: мозжечком, спинным мозгом, ядрами двигательных нервов глазных мышц и, вероятно, с корой большого мозга.На основании многочисленных клинических и экспериментальных исследований анатомия вестибулярной системы при современном состоянии наших знаний в основном представляется в следующем виде:

1. Анатомическая связь между вестибулярными ядрами и мозжечком осуществляется через tractus vestibulo-cerebellaris. Афферентные волокна к мозжечку начинаются от клеток ядер Бехтерева и Швальбе, проходят через нижние ножки мозжечка и заканчиваются в ядрах крыши мозжечка – nucleus tecti. Отсюда идут эфферентные пути к ядрам Дейтерса и Роллера. Кроме того, имеются эфферентные пути от червячка к ядрам Бехтерева и Швальбе.2. Основной эфферентный путь от вестибулярной системы представлен в виде tractus vestibulo-spinalis. Он начинается в больших клетках ядра Дейтерса, спускается через сетевидное вещество по передним столбам спинного мозга и заканчивается в передних рогах спинного мозга. Этот путь является проводником большей части лабиринтных рефлексов к мускулатуре шеи, туловища и конечностей. Это – наиболее короткая рефлекторная дуга. (Г.И. Гринберг,1957)3. Вторым эфферентным путем к двигательным клеткам передних рогов спинного мозга является tractus rubro-spinalis (монаковский пучок), проходящий по боковым столбам спинного мозга. Этот путь начинается от красного ядра покрышки противоположной стороны. Связь его с мозжечком и вестибулярными ядрами осуществляется следующим образом. Известно, что система вестибулярных ядер связана ассоциативными волокнами с корой мозжечка, которая в свою очередь связана с nucleus dentatus червячка. Последний дает ассоциативные волокна к nucleus rubber противоположной стороны. Tractus rubro-spinalis при переходе на противоположную сторону образует так называемый форелевский перекрест. Благодаря этому перекресту получается связь коры мозжечка с мускулатурой одноименной стороны.4. Связь вестибулярной системы с ядрами двигательных нервов глазных мышц обеспечивается задним продольным пучком, который начинается от ядра Даркшевича. Его связь с вестибулярными ядрами осуществляется следующим образом. Проводники, исходящие от ядра Бехтерева, связаны с ядрами 3 и 4 нервов, расположенными на той же стороне, а проводники, берущие начало от ядер Швальбе и Роллера, связывают их с ядрами 6 нерва той же стороны и после перекрестка входят в связь с 6,4, 3 нервами другой стороны.

Таким образом, этот путь обеспечивает двустороннюю связь вестибулярной системы с двигательными нервами глазных мышц.При посредстве этих волокон образуется рефлекторная дуга вестибулярного нистагма. Кроме того, задний продольный пучок своей нисходящей частью заканчивается в моторных клетках спинного мозга в области его шейных сегментов и тем самым является также проводником рефлексов мускулатуры шеи и верхних конечностей.

5. Связь вестибулярного аппарата с вегетативной нервной системой анатомически мало прослежена. Считается, что tractus vestibule-reticularis, начинающийся в ядре Швальбе, связывает вестибулярную систему через formation reticularis продолговатого мозга с ядрами блуждающего нерва. Что касается связи вестибулярной системы с симпатическими вегетативными ядрами, находящимися в гипоталамической области, то она, по-видимому, происходит за счет ассоциативных волокон, идущих туда от nucleus ruber. Эфферентными вегетативными путями считаются волокна, идущие от corpus Luisii к спинному мозгу.6. О связи вестибулярной системы с корой больших полушарий точных анатомических данных не имеется. Однако наличие подобных путей вероятно, потому что раздражение вестибулярного аппарата вызывает целый рад ощущений, которые доходят до сознания. Предполагается, что сенсорный путь проходит по восходящей ветви продольного пучка, который, по исследованиям некоторых авторов, связан со зрительным бугром. От последнего вестибулярные импульсы могут предаваться по таламокортикальным путям в кору головного мозга. Есть основание полагать, что вестибулярный корковый центр находится вблизи слухового коркового центра в височной доле. Клинические наблюдения показывают, при наличии патологических очагов в этой области часто наблюдается головокружение вестибулярного типа.

По первым трем направлениям осуществляется рефлексы на поперечнополосатую мускулатуру шеи, туловища и конечностей. Рефлексы, направляющиеся по 4 пути, проявляются в виде нистагма. Пятый путь является проводником всех вегетативных рефлексов, исходящих от вестибулярного аппарата. Наконец, по 6 пути кора головного мозга получает все сознательные ощущения, связанные с раздражением этого органа чувств, а также регулирует течение как соматических, так и вегетативных рефлексов со стороны вестибулярного аппарата. (Г.И. Гринберг, Р.А. Засосов,1957)

1.4 Влияние утомления вестибулярного анализатора на вестибулярные последовательные образы

вестибулярный анализатор дети фигурный катание

Механизмы, обуславливающие возникновение вестибулярных последовательных реакций, тесно связаны с функциональным состоянием вестибулярного анализатора и, вероятно, центральной нервной системы в целом. Проводился опыт по влиянию специфического утомления вестибулярного анализатора на течение последовательных образов. Утомление вестибулярного анализатора у испытуемых вызывалось путем кумуляции раздражения знакопеременными ускорениями Кориолиса по методике А.Е. Курашвили (1967). Данные исследования свидетельствуют


8-09-2015, 20:09


Страницы: 1 2 3
Разделы сайта