Нарушение экспрессии D-глюкуронил С5-эпимеразы как возможная причина изменения структуры протеогликанов в опухоли молочной железы человека

Новосибирский Государственный Университет

Факультет Естественных Наук

Кафедра Молекулярной Биологии

Дипломная работа

Нарушение экспрессии D-глюкуронил С5-эпимеразы как возможная причина изменения структуры протеогликанов в опухоли молочной железы человека

Бородина Анастасия Вячеславовна

Научные руководители:

к. б. н. Рыкова В.И., с. н. с. лаборатории Структуры генома ИЦиГ СО РАН.

к. б. н. Григорьева Э.В., с. н. с. лаборатории Молекулярных механизмов канцерогенеза Института Молекулярной Биологии и Биофизики СО РАМН.

Работа выполнена в лаборатории Структуры генома ИЦиГ СО РАН и лаборатории Молекулярных механизмов канцерогенеза Института Молекулярной Биологии и Биофизики СО РАМН

Новосибирск-2009

Содержание

Содержание

Список сокращений

Введение

Глава 1. Обзор литературы

1.1 Протеогликаны

1.2 Отличие протеогликанов от гликопротеинов

1.3 Классификация протеогликанов

1.4 Строение и классификация гликозаминогликанов

1.5 Присоединение цепей ГАГ к коровому белку

1.6 Гиалуроновая кислота

1.7 Хондроитинсульфат протеогликаны

1.8 Дерматансульфат протеогликаны

1.9 Гепарансульфат протеогликаны и гепарин

1.10 Кератансульфат протеогликаны

1.11 Биосинтез протеогликанов

1.12 Обмен протеогликанов

1.13 Локализация и функции протеогликанов

1.14 Состав протеогликанов в трансформированных клетках

1.14.1 Декорин

1.14.2 D-глюкуронил С5-эпимераза

Глава 2. Материалы и методы

2.1 Материалы

2.1.1 Операционный материал

2.1.2 Антитела

2.2 Методы

2.2.1 Выделение протеогликанов

2.2.2 Очистка препаратов протеогликанов от примесей нуклеиновых кислот

2.2.3 Идентификация протеогликанов

2.2.4 Аналитические методы

2.2.5 Вестерн-блот

2.2.6 Электрофорез

Глава 3. Результаты и обсуждение

3.1 Выделение протеогликанов

3.2 Отработка условий проведения электрофореза протеогликанов в агарозном геле

3.3 Очистка препаратов протеогликанов от примесей нуклеиновых кислот

3.3.1 Обработка препаратов протеогликанов щелочью

3.3.2 Обработка препаратов протеогликанов нуклеазами

3.4 Сравнение состава протеогликанов в контрольной и опухолевой ткани молочной железы человека

3.5 Количественная оценка протеогликанов

3.6 Идентификация фракций протеогликанов

3.6.1 Обработка препаратов протеогликанов специфическими ферментами

3.6.2 Обработка препаратов протеогликанов азотистой кислотой

3.7 Определение экспрессии декорина в контрольной и опухолевой ткани молочной железы человека

3.8 Определение экспрессии белковой молекулы D-глюкуронил С5-эпимеразы в контрольной и опухолевой ткани молочной железы человека

Заключение

Список литературы

Список сокращений

АТ - антитела

ВКМ - внеклеточный матрикс

ГАГ - гликозаминогликаны

ГС - гепарансульфат

Ге - гепарин

ГК - гиалуроновая кислота

ДС - дерматансульфат

КС - кератансульфат

НК - нуклеиновые кислоты

ПААГ - полиакриламидный гель

ПГ - протеогликаны

ПЦР - полимеразная цепная реакция

ХС - хондроитинсульфат

Эпимераза - D-глюкуронил С5-эпимераза

Ac - ацетил

Gal - галактоза

GalN - галактозамин

GlcN - глюкозамин

GlcUA - глюкуроновая кислота

IdoUA - идуроновая кислота

Fuc - фукоза

Man - манноза

SA - сиаловая кислота

Xyl - ксилоза

Введение

Проблема регуляции клеточной пролиферации является одной из ключевых проблем биологии. Нарушения в регуляции деления клеток приводят к изменению их митотической активности, что влечет за собой возникновение различных патологических состояний, в том числе злокачественную трансформацию.

В регуляции клеточного деления принимают участие различные биологические молекулы, в том числе и сложные белково-углеводные молекулы - протеогликаны.

Известно, что определенные представители протеогликанов обладают антимитотической активностью. В нашей группе было показано, что состав и количество протеогликанов в трансформированных клетках меняется. В опухолевых тканях, наряду с общим увеличением количества протеогликанов, снижается содержание дерматансульфат протеогликанов, характерных для покоящихся клеток, и возрастает содержание хондроитинсульфат протеогликанов, характерных для эмбриональных и активно пролиферирующих тканей. Были получены данные, что протеогликаны являются тканеспецифичными, но не видоспецифичными ингибиторами деления клеток и привлекают внимание как регуляторы клеточной пролиферации, в том числе как перспективные ингибиторы роста злокачественных опухолей.

Для некоторых протеогликанов, в частности, для декорина (дерматансульфат протеогликана), показан механизм антипролиферативного действия (через усиление экспрессии р21-белка и подавление активности циклин-зависимых киназ). Было показано, что в опухолевых клетках содержание декорина уменьшается. Добавление экзогенного декорина или генноинженерных конструкций, содержащих ген декорина, в культуру опухолевых клеток приводило к возвращению опухолевых клеток к нормальному фенотипу. Однако вопрос о причинах уменьшения содержания декорина в опухолевых клетках до сих пор не поднимался.

Нашей группой было выдвинуто предположение, что возможно, в опухолевых клетках происходят изменения в процессе биосинтеза протеогликанов.

Известно, что ключевым ферментом биосинтеза дерматансульфат протеогликанов является D-глюкуронил С5-эпимераза - фермент, осуществляющий модификацию углеводной цепи хондроитинсульфата в дерматансульфат. Нарушение экспрессии или изменение активности фермента D-глюкуронил С5-эпимеразы может служить причиной изменения соотношения хондроитинсульфатов и дерматансульфатов в тканях - уменьшению количества зрелого дерматансульфата (в том числе и декорина).

Для проверки этой гипотезы требуется провести параллельное определение состава протеогликанов и уровня экспрессии/активности D-глюкуронил С5-эпимеразы в одних и тех же образцах нормальной и опухолевой ткани. В качестве объекта исследования нами выбрана нормальная и опухолевая ткань молочной железы человека.

Данная дипломная работа посвящена определению состава протеогликанов и экспрессии белковой молекулы D-глюкуронил С5-эпимеразы в нормальной и опухолевой ткани молочной железы человека.

Глава 1. Обзор литературы

1.1 Протеогликаны

Протеогликаны (ПГ) - это семейство сложных макромолекулярных соединений, состоящих из белкового кора и ковалентно присоединенных к нему углеводных цепей - гликозаминогликанов (ГАГ) (рис.1).

Рис.1. Структура протеогликана аггрекана

1.2 Отличие протеогликанов от гликопротеинов

Еще недавно бытовало общепринятое разделение: гликопротеин - гликозилированный белок, протеогликан - углеводная молекула с небольшой белковой частью. Это разделение слишком неопределенное.

Существуют более четкие отличительные параметры, позволяющие выделить портеогликаны в обособленный класс белково-углеводных молекул.

Протеогликан - это гликопротеин, к которому присоединены углеводные цепи ГАГ. Гликозаминогликаны являются регулярными (повторяющиеся дисахаридные единицы), неразветвленными , высокозаряженными полимерами. Они присоединяются к коровому белку через кислород остатков серина (за некоторым исключением) - О -гликозилирование. В то время как гликопротеины, к которым относится большинство белков, модифицированы углеводными цепями, не имеющими регулярного строения, эти цепи зачастую не являются линейными (имеют ветвления) и либо состоят из нейтральных моносахаров, либо несут незначительный заряд . Олиго - или полисахаридные цепи в гликопротеинах присоединяются к полипептидным цепям через кислород остатков серина или (чаще) азот остатков аспарагина (О - или N -гликозилирование).

К тому же цепи ГАГ значительно превосходят по длине углеводные цепи гликопротеинов. Например, цепь ГАГ с молекулярным весом 20 кДа содержит около 50 остатков сахаров, в то время как типичный N-гликан содержит 10-12 остатков.

Протеогликаны могут нести на своем коровом белке помимо ГАГ-цепей также короткие нерегулярные олигосахариды. При этом свойства сложной молекулы определяются в основном типом ГАГ-цепи, хотя олигосахариды могут также влиять на биологическую активность.

Если к гликопротеину присоединена хотя бы одна цепь ГАГ, он является протеогликаном.

1.3 Классификация протеогликанов

Классифицируют протеогликаны по типу доминантных цепей ГАГ, присоедненных к коровому белку.

1.4 Строение и классификация гликозаминогликанов

Гликозаминогликаны представляют собой линейные гетерополисахариды, составленные из повторяющихся дисахаридных единиц, каждая из которых состоит из гексозамина ( D-глюкозамина - GlcN или D-галактозамина - GalN), соединенного с гексуроновой кислотой (D-глюкуроновой - GlcUA, или L-идуроновой - IdоUA), присутствующей во всех ГАГ, за исключением кератансульфата, где она замещена остатками галактозы (Gal).

Дисахаридные единицы могут быть N - и O-сульфатированы и/или ацетилированы. Степень сульфатирования ГАГ намного выше, чем других макромолекул и достигает 3-4 сульфатных групп на дисахарид.

Благодаря сульфатным и карбоксильным группам ГАГ имеют очень высокую плотность отрицательного заряда, что во многом определяет их биологические свойства и регулирует их взаимодействие с другими молекулами.

В зависимости от структуры дисахарида, а также степени сульфатирования, все ГАГ разделяют на несколько классов: гиалуроновая кислота (ГК), хондроитинсульфаты (ХС), дерматансульфаты (ДС), гепарансульфаты (ГС), гепарин (Ге), кератансульфаты (КС) (таблица 1 и рис.2). Зачастую на одном белковом коре находятся разные типы ГАГ-цепей.

Таблица 1. Классы гликозаминогликанов (ГАГ)

Класс ГАГ

Мол. Вес, кДа

Повторяющаяся дисахаридная единица

Сульфогруппа (O-, N-связанная)

Количество сульфо-групп на 1 дисахарид

Другие сахара, встречаю-щиеся в связующем участке
Гиалуроновая кислота, ГК 1-8000

D-GlcUA,

D-GlcN

- - -

Хондроитин-

сульфат, ХС

10-50

D-GlcUA,

D-GalN

O- 0,1-1,3 D-Gal, D-Xyl
Дерматан-сульфат, ДС 10-40

D-GlcUA/

L-IdоUA, D-GalN

O- 1-2,5 D-Gal, D-Xyl
Гепаран-сульфат, ГС 10-40 D-GlcUA/L-IdоUA, D-GlcN O-, N- 0,4-2,0 D-Gal, D-Xyl
Гепарин, Ге 5-25 D-GlcUA/L-IdоUA, D-GlcN O-, N- 1,5-3,0 D-Gal, D-Xyl
Кератан - сульфат I, KCI 5-25 D-Gal, D-GlcN O-

0,9-1,8

D-Man, L-Fuc, SA
Кератан - сульфат II, KCII 5-15 D-Gal, D-GlcN N- 0,9-1,8 D-GalN, SA

Рис.2. Структура дисахаридов, образующих цепи ГАГ различных классов

1.5 Присоединение цепей ГАГ к коровому белку

Цепи большинства ГАГ присоединяются к остатку серина корового белка через тетрасахаридный линкер: - Xyl-Gal-Gal-GlcUA-, далее следуют соответствующие чередующиеся дисахаридные единицы (рис.3). ГАГ-цепи присоединяются к остаткам серина определенных ГАГ-акцепторных сайтов на коровом белке: "-A-Ser-Gly-X-Gly-", где А - кислая аминокислота, а Х - точно не определена [1]. Дипептид Ser-Gly в последовательности акцепторного сайта белка является основным требованием для узнавания ферментом ксилозилтрансферазой, переносящим остаток ксилозы на серин [2].

Рис.3. Структура линкерного района протеогликанов

У кератансульфат протеогликанов линкерный район имеет разветвленное строение. Цепи ГАГ присоединяются к коровому белку либо через остаток аспарагина (N-гликозилирование) - КС I (рис.4), либо через остаток серина/треонина (О-гликозилирование) – КС II.

Рис.4. Структура линкерного района кератансульфат протеогликанов

1.6 Гиалуроновая кислота

Повторяющаяся дисахаридная единица гиалуроновой кислоты - GlcNAc-GlcUA. ГК широко распространена в природе, от капсул Streptococcus дотканей беспозвоночных и позвоночных организмов [3]. У млекопитающих ГК присутствует в коже, скелетной ткани, стекловидном теле глаза, пупочном канатике и синовиальной жидкости [4].

Типичный полимер может содержать 104 дисахаридных единиц (от 105 до107 Да) [5].

В растворе ГК имеет вытянутую структуру - будучи растянутым, полимер 106 Да имеет длину около 2 мкм. Благодаря своей длине, молекулы ГК стремятся образовать запутанную ситоподобную структуру. При концентрации 10 мг/мл вязкость (η) ГК составляет 5000 (т.е. в 5000 раз превышает вязкость воды), что придает упругость тканям, в которых гиалуроновая кислота присутствует в высокой концентрации (гребень петуха, стекловидное тело и др.). ГК является биологическим любрикантом - уменьшает трение при движении и обеспечивает упругость в статических условиях, участвует в поддержании гомеостаза воды, является своего рода фильтром и регулирует распределение белков плазмы [3].

Поскольку ГК имеет однородную структуру, может показаться, что она не принимает участия в специфических взаимодействиях. Однако это не так: обнаружена группа белков (гиаладгеринов), специфично узнающих структуру ГК. Такого типа взаимодействия связывают ГК с протеогликанами, стабилизируя структуру внеклеточного матрикса, и с клеточными поверхностями, изменяя поведение клеток [3].

Биосинтез ГК представляет собой кополимеризацию GlcNAcи GlcUA, донорами которых выступают высокоэнергетические нуклеотидные предшественники: UDP-GlcNAcи UDP-GlcUA, соответственно. В отличие от остальных гликозаминогликанов, ГК никогда ковалентно не присоединяется к белку. Биосинтез ГК происходит в плазматической мембране, что является исключением из правила, гласящего, что гликозилирование осуществляется в аппарате Гольджи [5, 6].

Катаболизируется ГК в лизосомах после рецептор-опосредованного эндоцитоза, на месте или же (после транспорта с током лимфы) в лимфатических узлах, где деградируется основная доля ГК [3].

1.7 Хондроитинсульфат протеогликаны

Хондроитинсульфаты представляют собой линейные полимеры, состоящие из повторяющихся дисахаридных единицGalNAc-GlcUA. В составе ДС-цепей присутствуют также остатки IdoUA (вместо GlcUA) в различных пропорциях. Количество дисахаридов в составе ХС-цепи варьирует от 40 до 100 и более штук.

Выделяют 6 классов ХС, в соответствии со структурой дисахаридных единиц: ХС А, ХС В (ДС), ХС С, ХС D, ХС Е и ХС iE (i-идуроновая кислота) (рис.5).

Рис.5. Шесть типичных дисахаридных единиц, обнаруженных в ХС и ДС

Огромное структурное разнообразие ХС и ДС, сравнимое с таковым у гепарансульфатов, обеспечивается включением в состав ГАГ-цепей дисахаридных единиц различной структуры и сульфатированных по различным положениям.

Такое структурное разнообразие лежит в основе широкого круга функций. ХС и ДС принимают участие в регуляции таких фундаментальных процессов, как рост, развитие, клеточная пролиферация, модулируя активность факторов роста.

ХС и ДС специфично взаимодействуют с гепарин-связывающими белками. Взаимодействия ДС-цепей с факторами роста фибробластов (FGF-2 и FGF-7) регулируют клеточную пролиферацию и заживление ран, а взаимодействия ДС с фактором роста гепатоцитов (HGF/SF) активируют HGF/SF-сигнальный путь через рецептор этого фактора роста (c-met-протоонкоген). ХС/ДС-протеогликан эндокан, секретируемый эндотелиальными клетками, стимулирует HGF/SF-индуцированную клеточную пролиферацию. Поскольку HGF/SFиграет важную роль в процессах морфогенеза, органогенеза, дифференцировки и ангиогенеза во многих типах клеток, то нарушения во взаимодействиях HGF/SFс его рецептором или же с предполагаемым корецептором ДС может привести к образованию опухоли и ее метастазированию.

ХС-цепи сходным образом взаимодействуют и с другими гепарин-связывающими белками. ХС/ДС-цепи протеогликана версикана, который экспрессируется в почках, коже, аорте, мозге, связываются, наряду с хемокинами, с адгезивными молекулами L - и P-селектинами. Все три типа молекул вовлечены в регуляцию движения лимфоцитов и резвитие воспалительных процессов [7].

Основные представители ХСПГ приведены в таблице 2.

Таблица 2. Примеры хондроитинсульфат протеогликанов

Протеогликан Коровый белок, кДа Количество цепей Ткань
Аггрекан 208-220 ~100 cекретируемый, хрящ
Версикан 265 12-15 cекретируемый, фибробласты
Нейрокан 145 1-2 cекретируемый, мозг
Бревикан 96 0-4 cекретируемый, мозг
Декорин 36 1 cекретируемый, клетки соединительной ткани
Бигликан 38 1-2 cекретируемый, клетки соединительной ткани
Бамакан 138 1-3 базальные мембраны
α2 (IX) коллаген 68 1 хрящ, стекловидное тело
Тромбомодулин 58 1 эндотелиальная мембрана
CD44 37 1-4 лимфоциты, мембранный
NG2 251 2-3 нейральные клетки, мембранный
Инвариантная цепь 31 1 антиген-презентирующие клетки
Серглицин 10-19 10-15 миелоидные клетки, гранулы

1.8 Дерматансульфат протеогликаны

ДС, также называемые хондроитинсульфатами В ( ХСВ), состоят из дисахаридных единиц D-GlcUA (L-IdоUA) - D-GalNАс. ДС относят к хондроитинсульфатам благодаря присутствиюв нихGalNAc, но из-за присутствия IdоUA их выделяют в отдельный класс ХС.

Дерматансульфат может быть рассмотрен как изомер ХС, в котором D-глюкуроновая кислота превращена в L-идуроновую. Однако полной эпимеризации всех остатков GlcUA, как правило, не происходит. Таким образом, цепи ДС являются гибридными молекулами с разными последовательностями.

Формирование L-IdoUAпроисходит путем С5-эпимеризации GlcUA, уже вошедшей в растущий полимер. Количество L-IdoUAв цепи варьирует в широких пределах - от нескольких процентов до 90% всей идуроновой кислоты. Среднее количество сульфатных групп на дисахарид в ДС выше, чем в ХС, что связано с наличием двух сульфатных групп у некоторых остатков L-IdoUA.

IdоUAиграет ключевую роль в формировании на ГАГ сайтов посадки различных ГАГ-связывающих белков. Подтверждением этого служит тот факт, что ГАГ-цепи, содержащие значительные количества остатков IdоUA, ингибируют пролиферацию нормальных фибробластов, в отличие от ГАГ с высоким содержанием остатковGlcUA.

Дерматансульфаты изучены значительно хуже других типов гликозаминогликанов. Впервые ДС были выделены из дермы, что и обусловило их название. ДС обнаружены и во многих других тканях. В высоких концентрациях они присутствуют в волокнистой соединительной ткани (в коже, сухожилиях, стенке кровеносных сосудов). ДС преобладают в коже и выделяются в высоких концентрациях в процессе заживления ран.

протеогликан белковая молекула опухоль

ДС выполняют множество функций, обеспечивая гибкое регулирование нормальных и патологических процессов, таких как развитие, рост, заживление ран, инфекция и опухолевый рост.

Различия в длине ГАГ-цепи ДС, различное положение остатков IdоUA, вариации в сульфатировании и существование множества альтернативных форм коровых белков обеспечивают огромное разнообразие и сложность ДС и ДСПГ.

Существует множество доказательств того, что различия в длине ГАГ-цепей, составе дисахаридов и сульфатировании определяют силу связывания различных факторов и регулируют функциональные взаимодействия ДС с потенциальными белковыми лигандами.

ДС модифицируются путем сульфатирования по С4 - и С6 - атомам гексозамина (как и ХС А и ХС С) и эпимеризации С2-атома уроновой кислоты (как ГС и Ге). Оба процесса контролируются регулируемыми ферментативными системами так, что в итоге в структуре ГАГ оказывается закодированной функциональная информация.

Таким образом, для ДС информационная последовательность состоит из трех вариаций структуры уроновой кислоты ( GlcUA, IdoUAили 2-O-сульфатированная IdoUA) и четырех вариаций структуры гексозамина (GalNAc, 4-O-сульфатированный GalNAc, 6-O-сульфатированный GalNAс, 4-O - и 6-O-дисульфатированный GalNAc). Также в дальнейшем (при образовании протеогликана) на информационную последовательность ДС оказвает влияние тип корового белка, специфичного к данной стадии развития и к данным физиологическим условиям.

Два наиболее изученных дерматансульфат протеогликана - маленькие лейцин-богатые ПГ декорин и бигликан. Оба протеогликана содержат маленький белковый кор, оба являются секретируемыми матриксными белками. Декорин и бигликан несут 1 и 1-2 ДС-цепи, соответственно.

ДСПГ взаимодействуют со множеством молекул, таких как молекулы внеклеточного матрикса, факторы роста, ингибиторы протеаз, цитокины, хемокины, факторы вирулентности патогенов и др. Некоторые из этих молекул приведены в таблице 3.

Tаблица 3. Связывание ДС и ДСПГ с различными молекулами

Белок ГАГ Последовательность для связывания Физиологический эффект
Кофактор гепарина II ДС, Ге IdoUA (2-OSO3 ) - GalNAc (4-OSO3 ) гексосахарид Ферментативная инактивация тромбина
Тромбин ДС, Ге - Предовращение свертывания крови
Активированный C-белок ДС, Ге - Предовращение свертывания крови
Ингибитор С-белка ДС, ГС, Ге - Стимуляция активности серпина
Тромбоцитарный фактор 4 ДС, Ге - -
Коллаген ДС Связывается коровый белок Стимуляция активности серпина
Фибронектин ДС, ГС Связывается коровый белок Стабилизация внеклеточного матрикса
Tенаскин-X ДС, ГС Связывается ГАГ-цепь Стабилизация коллагенового матрикса
Адгезины Borrelia burgdorferi ДС - Увеличение инфекционности
-дефензин ДС - Увеличение инфекционности
Интерферон- Ге, ГС, ДС - Рецептор для INF-
Трансформирующий фактор роста-b ДС Связывается коровый белок Регуляция роста
Факторы роста фибробластов 1 и 2 Ге, ГС, ДС - Клеточная пролифереция через активацию тирозинкиназы
Фактор роста гепатоцитов ДС, ГС IdoUA-GalNAc (4-OSO3 ) октосахарид для ДС Клеточная пролиферация, органогенез, опухолевый рост

Липопротеин низкой плотности

ДС - Стабилизация атеросклеротической бляшки

- нет данных.

Подробно функции ДСПГ описаны в обзоре [8].

1.9 Гепарансульфат протеогликаны и гепарин

ГС и Ге - структурно родственные ГАГ с повторяющимися дисахаридными единицами GlcNAcα1-4GlcAβ1-4. Однако между ними существуют значительные различия, важнейшие из которых приведены в таблице 4.

Таблица 4. Основные различия между гепарансульфатами и гепарином

Характеристика Гепарансульфат Гепарин
Растворимость в 2 М ацетате калия (pH5.7, 4°C) да нет
Размер 10-70 кДа 10-12 кДа
сульфат/гексозамин 0.8-1.8 1.8-2.4
GlcN N-сульфаты 40-60% ≥85%
Содержание IdoUA 30-50% ≥70%
Связывание с антитромбином 0-0.3% ~30%
Место синтеза практически все клетки тучные клетки

Гепарин синтезируется в тучных клетках и запасается в цитоплазматических гранулах. Он продается фармацевтическими компаниями как антикоагулянт. ГС, синтезирующиеся практически всеми типами клеток, также обладают антикоагуляционной активностью, однако в значительно меньшей степени, чем гепарин. В процессе биосинтеза гепарин значительно сильнее сульфатируется, в итоге более 85% остатков GlcNAcоказываются N-деацетилироваными и N-сульфатированными. И более 70 % остатков уроновой кислоты в гепарине претерпевает эпимеризацию [9].

Гепарин имеет самую высокую плотность отрицательного заряда среди известных биологических макромолекул. Это дает ему возможность осуществления ионных взаимодействий со множеством белков, таких как ферменты, ингибиторы ферментов, белки внеклеточного матрикса, различные цитокины и др. Такого рода взаимодействия используются при очистке гепарин-связывающих белков, которые сорбируются на иммобилизованном гепарине при низкой ионной силе, а затем элюируются солевым раствором.

Гепарин выделяют на коммерческой основе из тканей животных (из слизистой кишечника свиней, легкого коров). Он используется в клинике как антитромболитическое лекарство.

Гепарансульфаты широко распространены на поверхности всех типов клеток, а также во внеклеточном матриксе. ГС взаимодействуют с различными


8-09-2015, 23:36


Страницы: 1 2 3 4 5 6
Разделы сайта