Благодаря растворимости мицелл возможен транспорт продуктов расщепления липидов через жидкую среду просвета кишечника к щеточной каемке клеток слизистой оболочки, где эти продукты всасываются. В норме всасывается до 98% пищевых липидов.
Поступившие в энтероциты мицеллы разрушаются. Всосавшиеся продукты расщепления экзогенных липидов превращаются в энтероцитах в липиды, характерные для организма человека, и далее они поступают во внутреннюю среду организма. Высвободившиеся при распаде мицелл желчные кислоты из энтероцитов или поступают обратно в кишечник,или же поступают в кровь и через воротную вену оказываются в печени. Здесь они улавливаются гепатоцитами и вновь направляются в желчь для их повторного использования.
Такая энетро-гепатическая циркуляция желчных кислот, обеспечивающая их неоднократное использование, позволяет существенно снизить объем их ежесуточного синтеза. Общий пул желчных кислот в организме составляет 2,8 - 3,5 г. Они совершают 5-6 оборотов в сутки. Конечно, часть желчных кислот ежесуточно теряется с калом. Эти потери составляют по разным оценкам от 0,5г до 1,0 г в сутки. Потери восполняются их синтезом из холестерола.
Кстати, при нарушении поступления желчных кислот в кишечник в результате закупорки желчевыводящих путей больше страдает процесс всасывания продуктов расщепления липидов в стенку кишечника, нежели механизм переваривание липидов. Именно поэтому каловые массы у таких больных содержат большое количество солей высших жирных кислот, а не неизмененных липидов. Естественно, что в этой ситуации нарушается и всасывание жирорастворимых витаминов, так как они поступают в энтероциты также в составе мицелл.
1.3. Ресинтез липидов в кишечной стенке
В кишечной стенке всосавшиеся ацилглицерины могут подвергаться дальнейшему расщеплению с образованием свободных жирных кислот и глицерола под действием липаз, отличных от соответствующих ферментов, работающих в просвете кишечника. Часть моноацилглицеринов может без предварительного расщепления превращаться в триацилглицерины по так называемому моноацилглицериновому пути. Все высшие жирные кислоты, всосавшиеся в клетки кишечника, используются в энтероцитах для ресинтеза различных липидов.
Высшие жирные кислоты перед их включением в состав более сложных липидов, должны быть активированы. Процесс активации высших жирных кислот состоит из двух этапов:
а) на первом этапе идет взаимодействие высших жирных кислот с АТФ с образованием ациладенилата:
Образующийся в ходе реакции пирофосфат расщепляется на два остатка фосфорной кислоты и реакция образования ациладенилата становится необратимой - термодинамический контроль направления процесса.
б) на втором этапе ациладенилат взаимодействует с НS-КоА с образованием
Образование ацил-КоА катализируется ферментом ацил-КоА-синтетазой ( тиокиназой ), причем промежуточное соединение -- ациладенилат - остается связанным в активном центре фермента и в свободном виде не обнаруживается.
В ходе активации высшей жирной кислоты АТФ распадается до АМФ и двух остатков фосфорной кислоты, таким образом, активация жирной кислоты обходится клетке в 2 макроэргических эквивалента. Во всех своих превращениях в клетках жирные кислоты участвуют в активированной форме.
1.3.1. Ресинтез триацилглицеринов в стенке кишечника
При поступлении в энтероциты моноацилглицеринов, в особенности это касается 2-моноацилглицеринов, они путем последовательного двойного ацилирования могут быть превращены в триацилглицерины:
При наличии свободного глицерола в клетках кишечника ресинтез триглицеридов может идти через фосфатидную кислоту:
а) В начале идет активация глицерола при участии фермента глицеролкиназы:
б) Затем при последовательном переносе двух ацильных остатков образуется фосфатидная кислота:
Реакции катализируются двумя различными ацилтрансферазами.
в) Далее от фосфатидной кислоты гидролитическим путем отщепляется остаток фосфорной кислоты ( реакция катализируется фосфатазой фосфатидной кислоты ) с образованием диглицерида:
г) К образовавшемуся диглицериду с помощью ацилтрансферазы присоединяется третий остаток высшей жирной кислоты: В результате образуется триглицерид.
1.3.2. Ресинтез фосфолипидов в кишечной стенке
При поступлении в энтероциты лизофосфолипидов они подвергаются ацилированию по второму атому углерода глицерола и превращаются в фосфолипиды.
Клетки кишечника способны ресинтезировать фосфолипиды и из поступающих в них при пищеварении свободных жирных кислот, глицерола и аминоспиртов. Этот процесс можно разбить на три этапа:
а) образование диацилглицерида , ранее нами рассмотренное;
б) активация аминоспирта: аминоспирт, например, этаноламин подвергается при участии этаноламинкиназы энергозависимому фосфорилированиию:
затем при взаимодействии фосфорилированного аминоэтанола с ЦТФ идет образование активированной формы аминоспирта - ЦДФ-этаноламина:
Реакция катализируется фосфоэтаноламинцитидилтрансферазой. Образовавшийся в ходе реакции пирофосфат расщепляется пирофосфатазай -- термодинамический контроль направления процесса, с которым мы уже знакомились.
в) образование глицерофосфолипида:
ЦДФ-этаноламин + диглицерид ДД> фосфатидилэтаноламин + ЦМФ
Реакция катализируется фосфоэтаноламин-диацилглицеролтрансферазой.
С помощью подобного механизма может синтезироваться и фосфатидилхолин.
1.4. Транспорт липидов из кишечника к органам и тканям
Смесь всосавшихся и ресинтезированных в стенке кишечника липидов поступает в лимфатическую систему, а затем через грудной лимфатический проток в кровь и с током крови распределяется в организме. Поступление липидов в лимфу наблюдается уже через 2 часа после приема пищи, алиментарная гиперлипидемия достигает максимума через 6 - 8 часов, а через 10 - 12 часов после приема пищи она полностью исчезает.
Триглицериды, фосфолипиды, холестерол практически не растворимы в воде, в связи с чем они не могут транспортироваться кровью или лимфой в виде одиночных молекул. Перенос всех этих соединений осуществляется в виде особым образом организованных надмолекулярных агрегатов -- липопротеидных комплексов или просто липопротеидов.
В состав липопротеидов входят молекулы липидов различных классов и молекулы белков. Все липопротеиды имеют общий план структуры: амфифильные молекулы белков, фосфолипидов и свободного холестерола образуют наружную мономолекулярную оболочку частицы, в которой гидрофильные части молекул этих соединений направлены кнаружи и контактируют с водой, а гидрофобные части молекул обращены вовнутрь частиц, участвуя в образовании гидрофобного ядра частицы. В состав гидрофобного ядра липопротеидов входят триглицериды и эстерифицированный холестерол, сюда же могут включаться другие гидрофобные молекулы, например, молекулы жирорастворимых витаминов.
Существует несколько классов липопротеидных частиц, отличающихся друг от друга по составу, плавучей плотности и электрофоретической подвижности: хиломикроны (ХМ), липопротеиды очень низкой плотности (ЛПОНП), липопротеиды низкой плотности (ЛПНП) , липопротеиды высокой плотности (ЛПВП) и некоторые другие. В транспорте экзогенных липидов, т.е. липидов, поступающих во внутреннюю среду организма из кишечника, принимают участие главным образом ХМ и ЛПОНП.
Состав хиломикронов ( ХМ ) и липопротеидов очень низкой
очень низкой плотности ( ЛПОНП ) в % от массы частиц
Ведущую роль в транспорте экзогенных липидов играют хиломикроны, поэтому мы остановимся пока только на их метаболизме. Хиломикроны поступают в лимфатическую систему, а затем вместе с лимфой поступают в кровь и попадают вместе с током крови в капилляры различных органов и тканей.
На поверхности эндотелия капилляров имеется фермент липопротеидлипаза, закрепленная там с помощью гепарансульфата. Липопротеидлипаза расщерляет триглицериды хиломикронов до глицерола и высших жирных жирных. Часть высших жирных кислот поступает в клетки, другая их часть связывается с альбуминами и уносится током крови в другие ткани. Глицерол также может или утилизироваться непосредственно в клетках данного органа, или уносится током крови. Кроме триглицеридов хиломикронов липопротеидлипаза способна гидролизовать триглицериды ЛПОНП.
Интересно, что липопротеидлипаза в капиллярах различных органов обладает различным сродством к триглицеридам ХМ и ЛПОНП. Например, сродство липопротеидлипазы капилляров миокарда к триглицеридам этих липопротеидов значительно выше, чем у липопротеидлипазы липоцитов. Поэтому в постабсорбционный период и при голодпнии, когда содержание ЛП-частиц в крови снижается, липлпротеидлипаза капилляров миокарда остается насыщенной субстратом, тогда как гидролиз триглицеридов в жировой ткани практически прекращается.
Хиломикроны, потеряв большую часть своих триглицеридов под действием липопротеидлипазы, превращаются в так называемые ремнантные ХМ. Эти ремнанты в дальнейшем или поглощаются печенью, где они полностью расщепляются, или же, по некоторым сведениям, в результате достаточно сложной перестройки их состава могут превращаться в ЛПВП. В норме спустя 10 - 12 часов после приема пищи плазма практически не содержит хиломикронов.
Перейдем к рассмотрению внутриклеточных процессов расщепления и синтеза липидов различных классов: жирных кислот, триглицеридов, фосфолипидов, сфинголипидов и стероидов.
2.1. Окисление жирных кислот в клетках
Высшие жирные кислоты могут окисляться в клетках тремя путями:
а) путем a-окисления,
б) путем b-окисления,
в) путем w-окисления.
Процессы a- и w-окисления высших жирных кислот идут в микросомах клеток с участием ферментов монооксигеназ и играют в основном пластическую функцию -- в ходе этих процессов идет синтез гидроксикислот, кетокислот и кислот с нечетным числом атомов углерода, необходимых для клеток. Так, в ходе a-окисления жирная кислота может быть укорочена на один атом углерода, превращаясь таким образом в кислоту с нечетным числом атомов"C", в соответствии с приведенной схемой:
2.1.1. b-Окисление высших жирных кислот Основным способом окисления высших жирных кислот, по крайней мере в отношении общего количества окисляющихся в клетке соединений данного класса, является процесс b-окисления, открытый Кноопом еще в 1904 г. Этот процесс можно определить как процесс ступенчатого окислительного расщепления высших жирных кислот, в ходе которого идет последовательное отщепление двухуглеродных фрагментов в виде ацетил-КоА со стороны карбоксильной группы активированной молекулы высшей жирной кислоты.
Поступающие в клетку высшие жирные кислоты подвергаются активации с превращением их в ацил-КоА ( R-CO-SKoA), причем активация жирных кислот происходит в цитозоле. Сам же процесс b-окисления жирных кислот идет в матриксе митохондрий. В то же время внутренняя мембрана митохондрий непроницаема для ацил-КоА, в связи с чем встает вопрос о механизме транспорта ацильных остатков из цитозоля в матрикс митохондрий.
Ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика, в качестве которого выступает карнитин ( КН ):
В цитозоле с помощью фермента внешней ацилКоА:карнитинацилтрансферазы ( Е1 на ниже приведенной схеме ) остаток высшей жирной кислоты переносится с коэнзима А на карнитин с образованием ацилкарнитина:
Ацилкарнитинин при участии специальной карнитин-ацилкарнитин-транслоказной системы проходит через мембрану внутрь митохондрии и в матриксе с помощью фермента внутренней ацил-КоА:карнитин-ацилтрансферазы ( Е2) ацильный остаток передается с карнитина на внутримитохондриальный коэнзим А. В результате в матриксе митохондрий появляется активированный остаток жирной кислоты в виде ацил-КоА; высвобожденный карнитин с помощью той же самой транслоказы проходит через мембрану митохондрий в цитозоль, где может включаться в новый цикл переноса. Карнитин-ацилкарнитин-транслоказа, встроенная во внутреннюю мембрану митохондрий, осуществляет перенос молекулы ацилкарнитина внутрь митохондрии в обмен на молекулу карнитина, удаляемую из митохондрии.
Активированная жирная кислота в матриксе митохондрий подвергается ступенчатому циклическому окислению по схеме:
В результате одного цикла b-окисления радикал жирной кислоты укорачивается на 2 атома углерода, а отщепившийся фрагмент выделяется в виде ацетил-КоА. Суммарное уравнение цикла:
В ходе одного цикла b-окисления, например,при превращении стеароил-КоА в пальмитоил-КоА с образованием ацетил-КоА, высвобождается 91 ккал/моль свободной энергии, однако основная часть этой энергии накапливается в виде энергии восстановленных коферментов, потери же энергии в виде теплоты составляют лишь около 8 ккал/моль.
Образовавшийся ацетил-КоА может поступать в цикл Кребса, где он будет окисляться до конечных продуктов или же может использоваться для других нужд клетки, например, для синтеза холестерола. Укороченный на 2 атома углерода ацил-КоА вступает в новый цикл b-окисления. В результате нескольких последовательных циклов окисления вся углеродная цепь активированной жирной кислоты расщепляется до "n" молекул ацетил-КоА, причем значение "n" определяется числом атомов углерода в исходной жирной кислоте.
Энергетический эффект одного цикла b-окисления можно оценить исходя из того, в ходе цикла образуются 1 молекула ФАДН2 и 1 молекула НАДН+Н . При их поступлении в цепь дыхательных ферментов будет синтезироваться 5 молекул АТФ ( 2 + 3 ). Если образовавшийся ацетил-КоА будет окислен в цикле Кребса, то клетка получит еще 12 молекул АТФ.
Для стеариновой кислоты суммарное уравнение ее b-окисления имеет вид:
Расчеты показывают, что при окислении стеариновой кислоты в клетке будет синтезироваться 148 молекул АТФ. При расчете энергетического баланса окисления из этого количества нужно исключить 2 макроэргических эквивалента, затрачиваемых при активации жирной кислоты ( в ходе активации АТФ расщепляется до АМФ и 2 Н3РО4). Таким образом, при окислении стеариновой кислоты клетка получит 146 молекул АТФ.
Для сравнения: при окислении 3 молекул глюкозы, содержащих также 18 атомов углерода, клетка получает только 114 молекул АТФ, т.е. высшие жирные кислоты являются более выгодным энергетическим топливом для клеток по сравнению с моносахаридами. По-видимому, это обстоятельство является одной из главных причин того, что энергетические резервы организма представлены преимущественно в виде триацилглицеринов, а не гликогена.
Общее количество свободной энергии, выделяющееся при окислении 1 моля стеариновой кислоты составляет около 2632 ккал, из них накапливается в виде энергии макроэргических связей синтезированных молекул АТФ около 1100 ккал.Таким образом, аккумулируется примерно 40% всей выделяющейся свободной энергии.
Скорость b-окисления высших жирных кислот определяется, во-первых, концентрацией жирных кислот в клетке и, во-вторых, активностью внешней ацил-КоА:карнитин-ацилтрансферазы. Активность фермента угнетается малонил-КоА. На смысле последнего регуляторного механизма мы остановимся несколько позднее, когда будем обсуждать координацию процессов окисления и синтеза жирных кислот в клетке.
2.1.2. Особенности окисления жирных кислотс нечетным числом атомов углерода и нена сыщенных жирных кислот
Окислительный распад жирных кислот с нечетным числом атомов углерода идет также путем b-окисления, но на заключительном этапе из этих соединений образуется пропионил-КоА, имеющий в своем составе 3 атома углерода. Пропионил-КоА не может ни окисляться путем b-окисления - необходимо соединение минимум с 4 атомами углерода, ни окисляться в цикле Кребса, поскольку в него могут поступать лишь двухуглеродные остатки ацетила.
В клетках существует специальный путь окисления пропионил-КоА, в ходе которого могут окисляться и пропионил-КоА, образующиеся при окислении углеродных скелетов некоторых аминокислот:
Фермент пропионил-КоА-карбоксилаза является биотин-зависимым ферментом. В свою очередь в структуру метилмалонил-КоА мутазы входит кобамидный кофактор; поэтому при недостатке в организме витамина В12 нарушается превращение метилмалонил-КоА в сукцинил-КоА и с мочой начинает выделяться повышенное количество и пропионата, и метилмалоната. Определение содержания этих соединений в моче представляет собой ценный тест для диагностики В12-дефицитных состояний.
При окислении ненасыщенных жирных кислот, например, олеиновой или пальмитоолеиновой, имеющаяся в их составе двойная углерод-углеродная связь постепенно смещается к карбоксильному концу молекулы и в результате нескольких циклов b-окисления образуется еноил-КоА в котором, во-первых, двойная связь находится между третьим и четвертым атомами углерода, а, во-вторых, эта двойная связь имеет цис-конфигурацию. Однако в клетках есть специальный фермент из класса изомераз, который переводит двойную связь в углеродном радикале кислоты из положения 3,4 в положение 2,3 и изменяет цис-конфигурацию относительно двойной связи на транс-конфигурацию. За счет действия этой изомеразы преодолеваются стереохимические затруднения , возникающие при окислении ненасыщенных жирных кислот.
2.2."Мобилизация" триглицеридов жировой ткани
и проблема транспорта высших жирных кислот
В постабсорбционном периоде идет мобилизация энергетических резервов организма, в том числе мобилизация резервных триглицеридов жировой ткани. Образующиеся в ходе мобилизации высшие жирные кислоты через мембраны липоцитов поступают в кровяное русло и в комплексе с альбуминами переносятся с током крови в различные органы и ткани. Там они проникают через наружные клеточные мембраны внутрь клеток и связываются с специальным так называемым Z-белком. В комплексе с этим внутриклеточным белком-переносчиком они перемещаются в цитозоле к месту их использования.
Концентрация неэстерифицированных ( иначе свободных ) высших жирных кислот в плазме крови натощак составляет 0,68-0,88 мМ/л. Они очень быстро обмениваются в крови -- время их полужизни ( или полупериод их существования) в русле крови составляет около 4 минут. За сутки с током крови переносится до 150 г жирных кислот.
Кстати говоря, эта величина превышает величину суточного поступления липидов в организм, что свидетельствует о том, что значительная часть транспортируемых кровью высших жирных кислот являются продуктом их биосинтеза в организме из углеводов или углеродных скелетов аминокислот.
В условиях длительной интенсивной работы, требующей больших энергозатрат, жирные кислоты, поступающие из жировых депо, становятся основным видом "энергетического топлива". Значение их как энергетического топлива еще более возрастает при недостатке глюкозы в клетках органов и тканей, например при сахарном диабете или голодании.
Однако на пути эффективного использования клетками высших жирных кислот, поступающих из кровяного русла, встает так называемый "диффузионный барьер". Суть этого явления в следующем: высшие жирные кислоты на своем пути из кровяного русла в клетки должны пройти через гидрофильную фазу межклеточной среды. Но высшие жирные кислоты не растворимы в воде и скорость их движения через межклеточную среду ограничена. Даже если счесть,что через межклеточное вещество они идут, оставаясь в комплексе с альбуминами (примерно 4% всех альбуминов плазмы крови в течение часа покидают русло крови и такое же их количество возвращается в русло крови с лимфой), то и в этом случае скорость их движения через межклеточный матрикс остается явно недостаточной.
Выходом из положения является преобразование жирных кислот в печени в соединения с небольшой молекулярной массой, растворимые в воде: b-гидроксибутират и ацетоацетат, которые из печени поступают
8-09-2015, 19:01