Из других элементов, необходимых для нормальной жизнедеятельности гриба и образования антибиотика, следует отметить калий, магний, цинк, железо, марганец, медь.
Также необходимо присутствие предшественников в среде. Предшественниками называются вещества, непосредственно включающиеся в молекулу получаемого продукта. Предшественником бензилпенициллина является фенилуксусная кислота (ФУК) или ее производные - фенилацетамид (ФАА), фенилэтиламин, фенилацетилглицин и другие вещества. Предшественником феноксиметилпенициллина является феноксиуксусная кислота (ФОУК). Оптимальная концентрация предшественника в среде устанавливается в зависимости от эффективности его использования для биосинтеза пенициллина данным штаммом.
Для биосинтеза пенициллина наиболее благоприятно нейтральное значение рН. Для поддержания в культуральной жидкости определенного уровня рН рекомендуется регулировать его с помощью автоматического добавления кислоты или щелочи либо путем установления правильного соотношения компонентов среды. В синтетических средах в качестве регуляторов рН чаще всего применяют органические кислоты, в комплексных средах - мел. Своеобразным регулятором рН при промышленном получении пенициллина является кашалотовый жир, который добавляется в среду в процессе ферментации как пеногаситель.
Для получения максимального выхода пенициллина основные компоненты среды должны входить в ее состав в строго определенных соотношениях и концентрациях. Состав некоторых сред, применяемых в производстве пенициллина представлен в таблице 2.
Таблица 2 – Состав сред, применяемых для получения пенициллина
Компоненты | Среда | ||
кукурузная | жмыховая | жировая | |
Кукурузный экстракт | 2,0 – 3,0 | - | 2,0 – 3,0 |
Жмыхи (арахисовый, подсолнечный, соевый и др.) | - | 2,0 – 4,0 | - |
Лактоза | 5,0 | 5,0 | 1,0 |
Глюкоза или гидрол | 1,5 | 1,5 | 1,5 |
Кашалотовый жир или растительные масла | 0,5 – 0,1 | 0,5 – 0,1 | 2,5 – 3,5 |
Азотнокислый аммоний | 0,4 | 0,4 | 0,4 |
Сернокислый натрий | 0,05 | 0,05 | 0,05 |
Фосфорнокислый калий однозамещенный | 0,4 | 0,4 | 0,4 |
Сернокислый магний | 0,025 | 0,025 | 0,025 |
Серноватистокислыый натрий (гипосульфит) | 0,2 | 0,2 | 0,2 |
Мел | 0,5 – 1,0 | 0,5 – 1,0 | 0,5 – 1,0 |
Предшественник | 0,3 – 0,4 | 0,3 – 0,4 | 0,3 – 0,4 |
Основными показателями, свидетельствующими об окончании ферментации, являются полное исчезновение углеводов в культуральной жидкости и прекращение биосинтеза антибиотика. Процесс ферментации в производственных условиях осуществляется при температуре 26±10 С и продолжается обычно 120-125 часов.
Интенсивность биосинтеза пенициллина зависит от количества мицелия, образуемого в процессе ферментации. Большая биомасса образует больше пенициллина, поэтому содержание углеводов, азота, фосфора и серы в среде должно быть достаточно высоким, чтобы обеспечить максимальное образование мицелия. Однако большая биомасса еще не гарантирует высокого выхода антибиотика. Гриб необходимо обеспечить не только достаточным количеством питательных веществ, но и необходимым количеством кислорода. Питание гриба и аэрация являются двумя сторонами одного процесса – чем больше питательных веществ в среде, тем больше требуется кислорода для их окисления. С другой стороны, повышение концентрации питательных веществ в среде ведет к увеличению биомассы, для дыхания которой требуется пропорционально большее количество кислорода. Состав питательной среды и аэрация взаимообусловлены. Максимальное количество пенициллина может быть получено только на средах с высокой концентрацией компонентов в условиях достаточного снабжения культуры растворенным кислородом.
Важным условием успешного проведения процесса биосинтеза пенициллина является строгое соблюдение условий асептики, так как попадание посторонних микроорганизмов может резко снизить выход антибиотика. Многие распространенные микроорганизмы способны образовывать фермент пенициллиназу, расщепляющий пенициллины. Попадание даже небольшого числа бактерий, способных вырабатывать пенициллиназу, приводит к полной инактивации пенициллина, в связи чемследует уделять особое внимание стерильности питательных сред, воздухаи вспомогательных материалов.
Необходимость обеспечения условий стерильности процессов при технологических связях агрегатов между собой коллекторными системами загрузки питательных сред, передачи посевного материала из инокуляторов в ферментаторы накладывает более высокие требования к уровню автоматизации этих процессов.
3.2.3 Фильтрация
Обычно для отделения мицелия от культуральной жидкости применяют вакуум-барабанные фильтры непрерывного действия. Фильтрацию начинают до начала автолиза мицелия, поскольку при фильтрации автолизированной культуры мицелий не образует плотной пленки на фильтрующей поверхности барабана, а налипает в виде отдельных тонких комков, которые сами не отходят в зоне «отдувки» фильтра, и их приходится удалять вручную. При этом продолжительность фильтрации увеличивается в 2 - 3 раза, выход фильтрата резко падает, а сам фильтрат получается очень мутным.
Необходимо тщательно соблюдать условия, препятствующие разрушению пенициллина во время фильтрации, - охлаждение нативного раствора до 4-6°С и систематическая (после каждой загрузки) обработка фильтра, коммуникаций и сборников антисептиками, например хлорамином. Фильтр также должен систематически стерилизоваться острым паром.
3.2.4 Предварительная обработка нативного раствора
Нативный раствор (фильтрат культуральной жидкости) представляет собой более или менее мутную, окрашенную в желто-коричневый или зеленовато-коричневый цвет жидкость. Величина рН среды в зависимости от штамма продуцента, состава среды и продолжительности процесса ферментации обычно колеблется от 6,2 до 8,2.
Очень важной характеристикой нативного раствора является содержание в нем белковых веществ, определяемых осаждением трихлоруксусной кислотой или другим соответствующим методом.
Применяется несколько способов предварительной обработки нативного раствора с целью освобождения от белковых примесей: осаждение солями многовалентных металлов (например, А13+ Fе3+ или Zn2+ ), коагуляция танином, термическая коагуляция при температуре 60-75°С и рН 5,5 - 6,0, осаждение примесей катионными детергентами типа четвертичных аммониевых оснований (например, цетилпиридиний-бромидом или додецилтриметиламмонийхлоридом и т.п.). Применение этих методов приводит к потерям антибиотика. Обычно в результате коагуляции и последующей фильтрации или сепарирования теряется от 5 до 15%) пенициллина. При этом коагуляция солями металлов позволяет удалять не более 50% общего количества белковых веществ.
3.2.5 Экстракция и очистка пенициллина
Нативный раствор содержит 3-6% сухих веществ. На минеральные вещества приходится 30-40% сухого остатка, от 15 до 30% приходится на пенициллин, а остальное представляет сложную смесь органических веществ, включая белки, полипептиды, низкомолекулярные азотистые соединения, углеводы, различные органические кислоты и, в зависимости от штамма продуцента, то или иное количество пигмента. Для выделения пенициллина из этой сложной смеси можно пользоваться методами, основанными на адсорбции, экстракции или осаждении.
В промышленности извлечение активного вещества из нативного раствора основано на экстракции не смешивающимся с водой растворителем при подавленной диссоциации карбоксильной группы пенициллина. В растворитель, кроме пенициллина, переходит большая часть органических кислот. Минеральные загрязнения, большая часть азотистых соединений и других органических веществ остаются в водной фазе, так что в результате экстракции чистота продукта увеличивается в 4-6 раз.
К растворителям, применяемым для экстракции пенициллина, предъявляются следующие основные требования:
1) малая растворимость в воде;
2) отсутствие взаимодействия с пенициллином;
3) низкая упругость пара при температуре 5—30°С;
4) возможность регенерации при температуре не выше 120 — 140°;
5) низкая стоимость.
С учетом этих и ряда других показателей основными растворителями-экстрагентами были приняты бутилацетат и амилацетат.
При кислых значениях рН пенициллин нестабилен, поэтому при экстракции пенициллина в органический растворитель необходимо строго контролировать рН, поддерживая его в пределах 1,9-2,0, проводить экстракцию в возможно короткое время, охлаждать жидкости.
При экстракции пенициллина из нативного раствора образуются весьма стойкие, трудноразделяемые эмульсин, что обусловлено наличием в нативном растворе поверхностно-активных веществ. Это требует применения специальных дезэмульгаторов. Обычно для этой цели применяют анионные детергенты, например сульфированные жирные или нафтеновые кислоты. Обычно выбор детергента определяется его доступностью и экономическими соображениями. Для разделения эмульсии в экстракторах-сепараторах, как правило, достаточно добавлять к нативному раствору 0,05—0,1% детергента.
На стадии экстракции пенициллина из нативного раствора используются либо многоступенчатые экстракторы-сепараторы типа «Лувеста» и «Россия», либо двухступенчатая схема экстрагирования (контактирование подкисленного нативного раствора с бутилацетатом в специальных смесителях и разделение эмульсии на центробежных сепараторах типа САЖ-3). Применение эффективных центробежных экстракторов-сепараторов (с производительностью 4000—5000 л/час), обеспечивающих по крайней мере две ступени экстракции в одной машине и хорошее разделение фаз, сводит до минимума время пребывания пенициллина в кислой водной среде и, следовательно, повышает выход антибиотика. Применение двухступенчатой схемы при экстракции пенициллина из нативного раствора, безусловно, нежелательно не только вследствие более длительного времени пребывания пенициллина в неблагоприятных условиях в этом случае, но и вследствие того, что применение сепараторов САЖ-3 (производительность которых колеблется в пределах 800— 1000 л/час) не всегда обеспечивает достаточно полное разделение фаз. Это влечет за собой ухудшение качества бутилацетатного экстракта (загрязнение нативным раствором) и увеличение потерь бутилацетата с отработанным нативным раствором. Соотношение фаз при проведении бутилацетатной экстракции пенициллина из нативного раствора составляет 1,0:0,3—0,45, температура 4—3°С.
После проведения бутилацетатной экстракции пенициллина из нативного раствора производят извлечение пенициллина из бутилацетатного экстракта водным раствором бикарбоната натрия или буферным раствором при рН 6,6—7,2. На этой стадии также применяют многоступенчатые экстракционные машины или используют двухступенчатую противоточную экстракцию с разделением эмульсии на сепараторах с отношением растворительно-водная фаза 1.0:0,35. Выход по бутилацетатной и буферной экстракциям составляет около 90-92%.
Для дальнейшей очистки пенициллин повторно извлекают из буферного экстракта органическим растворителем (чаще всего бутилацетатом или хлороформом) при рН 2,0. Процесс ведется аналогично бутилацетатной экстракции из нативного раствора. Эта стадия технологически оформляется также с применением многоступенчатых экстракционных машин или осуществляется в виде двухступенчатой противоточной экстракции с разделением фаз на сепараторах. Выход составляет около 86% от количества пенициллина, содержащегося в нативном растворе.
Весь экстракционный процесс извлечения и химической очистки пенициллина проводится по непрерывной схеме.
3.2.5 Выделение кристаллических солей пенициллина
Наиболее надежным методом, обеспечивающим получение кристаллического пенициллина хорошего качества, является выделение бензилпенициллина из бутилацетатного экстракта в виде концентрированного водного раствора калиевой соли с последующим упариванием воды с бутанолом под вакуумом, что приводит к кристаллизации калиевой соли из бутилового спирта.
Этот процесс имеет следующую технологическую последовательность:
1. Обезвоживание бутилацетатного экстракта путем охлаждения до —16-18°С с последующей фильтрацией от льда. Удаление пигментных загрязнений обработкой активированным углем и фильтрацией на охлажденном друк-фильтре.
2. Получение концентрата калиевой соли бензилпенициллина экстракцией 0,56—0,6 н раствором едкого кали.
3. Стерилизующая фильтрация концентрата калиевой соли и упаривание под вакуумом с бутиловым спиртом (2,5 объема) при температуре 16—26° и остаточном давлении 5—10 мм рт. ст. Объем кубового остатка должен составлять не более 60—80% объема загруженного концентрата. Добавление бутанола к концентрату при упаривании под вакуумом связано с тем, что бутанол с водой образует смесь, кипящую при более низкой температуре по сравнению с температурой кипения воды. Отгонка воды проводится сравнительно в мягких условиях, вследствие чего возможность инактивации пенициллина уменьшается. После удаления воды и большей части бутилового спирта калиевая соль бензилпенициллина кристаллизуется,
4. Фильтрация осадка калиевой соли бензилпенициллина на фильтрующей центрифуге и промывка осадка безводным бутиловым спиртом.
5. Гранулирование полученной пасты и сушка калиевой соли в вакуум-сушильных шкафах при температуре 75—80° и остаточном давлении 10—20 мм рт. ст. При этом получается калиевая соль бензилпенициллина в виде белого мелкокристаллического порошка с активностью содержанием бензилпенициллина порядка 95% и выходом 70% от количества антибиотика в нативном растворе.
Важнейшим требованием, предъявляемым к получаемому сухому порошку пенициллина, является его полная стерильность. Термическая обработка препарата недостаточна. Стерильность может быть обеспечена лишь при проведении заключительных стадий процесса в строго асептических условиях, исключающих возможность заражения продукта микроорганизмами и их спорами. Поэтому, начиная со стерилизующей фильтрации концентрата и бутанола, все операции проводятся в изолированных стерильных помещениях и в стерильной аппаратуре. Для обеспечения условий асептики осуществляется весь комплекс необходимых санитарных и технологических мероприятий.
Перед регенерацией бутилацетат и бутанол, применяемые в процессе выделения и химической очистке пенициллина, промывают раствором щелочей для удаления примесей кислот (продуктов инактивации пенициллина, фенилуксусной кислоты).
3.3 Отходы производства
Основные отходы, образующиеся в результате выделения и химической очистки антибиотиков, следующие: отработанные нативные растворы, водные маточные и промывные растворы, водные растворы кислот и щелочей после регенерации ионообменных смол, отработанный активированный уголь, кубовые остатки после регенерации растворителей. В этих отходах вредную долю составляют антибиотики и продукты их деструкции, а также органические растворители.
Принципиальные задачи совершенствования технологии получения антибиотиков из нативных растворов с точки зрения сокращения отходов производства заключаются в повышении выхода целевых продуктов и тем самым снижении потерь антибиотика, снижении расходов сырья на стадиях и повышении эффективности регенерации органических растворителей.
Существенное снижение потерь антибиотиков в процессе их выделения может быть достигнуто путем решения комплекса задач: усовершенствование процесса ферментации с целью повышения качества культуральных жидкостей; проведение эффективной очистки нативных растворов от примесей, затрудняющих процессы выделения антибиотиков; сокращение числа технологических стадий; уменьшение длительности процессов; использование эффективного высокопроизводительного оборудования.
Так, применение эффективной очистки и подготовки нативных растворов пенициллина позволяет повысить концентрацию перерабатываемых нативных растворов на 30-40% и открывает возможность применить сокращенную схему экстракционной очистки антибиотика, что снижает примерно вдвое расход бутилацетата при экстракции и активированного угля на очистку экстракта. При этом достигается уменьшение потерь антибиотика на 15-30%, что соответственно снижает количество поступающих в отходы антибиотика и продуктов деструкции.
Одной из важнейших проблем производства антибиотиков является утилизация и обезвреживание мицелиальных отходов. Мицелиальные отходы образуются в результате отделения жидкой фазы культуральной жидкости.
Часть образующихся мицелиальных отходов утилизируется в сельском хозяйстве. Это мицелиальные массы продуцентов пенициллина, тетрациклина и хлортетрациклина. Применение мицелиальных отходов для кормления крупного рогатого скота увеличивает среднесуточные привесы на 16-58%. Расход кормов при этом снижается на 10-30%.
Однако более двух третей образующегося мицелия утилизируется в отвалы, систему сточных вод или сжигается, что нельзя назвать приемлемым как с позиции загрязнения почв и загрузки очистных сооружений, так и с точки зрения нерационального к этому типу отходов, содержащих достаточное количество ценных веществ.
3.4 Охрана окружающей среды
Основные газовые выбросы в атмосферу предприятий по производству антибиотиков, содержащие вредные вещества, включают, кроме воздушных выбросов общеобменной и местной вентиляции, технологические воздушные выбросы при биосинтезе антибиотиков, выбросы котельных и некоторых других вспомогательных производств. Различными способами очистки обеспечивается улавливание около 60% вредных веществ, отходящих от всех источников загрязнения.
Газообразные вредные вещества состоят в основном из окиси углерода (77,4%), сернистого газа (15,2%) и окислов азота (7,4%).
К специфическим для производства антибиотиков жидким и газообразным продуктам относятся пары органических растворителей, составляющие 24,3% от общей суммы выбрасываемых веществ (табл. 3).
Таблица 3 – Качественный и количественный состав органических растворителей в воздушных выбросах производства антибиотиков
Наименование классов и веществ | Содержание растворителя в выбросе в % от общей суммы выбрасываемых растворителей |
1. Спирты | 55,27 |
Этиловый спирт | 26,26 |
Бутиловый спирт | 16,69 |
Метиловый спирт | 8,20 |
Изопропиловый спирт | 4,00 |
Пропиловый спирт | 0,07 |
Изооктиловый спирт | 0,05 |
2. Сложные эфиры | 32,22 |
Бутилацетат | 30,66 |
Этилацетат | 1,56 |
3. Ацетон | 9,26 |
4. Хлорпроизводные углеводородов | 2,88 |
Хлористый метилен | 2,37 |
Четыреххлористый углерод | 0,39 |
Трихлорэтилен | 0,09 |
Хлороформ | 0,03 |
5. Углеводороды | 0,32 |
Бензин | 0,27 |
Бензол | 0,05 |
6. Простые эфиры | 0,05 |
Диэтиловый эфир | 0,04 |
Диметиловый эфри | 0,01 |
Кроме того, в воздушных выбросах присутствует целый ряд примесей паров различных веществ, составляющих 0,4% от общей суммы выбрасываемых в атмосферу жидких и газообразных продуктов. Среди них преобладает хлористый водород, пары соляной кислоты, формальдегид и трикрезол.
Неспецифические для производства антибиотиков твердые вещества в выбросах улавливаются газопылеочистными установками на 90%, газообразные выбросы котельных рассеиваются с помощью высоких труб. Специфические для производства антибиотиков твердые веществ из воздушных выбросов на 92,5%, органические растворители – на 10%, обезвреживается 5,4% от объема воздушных выбросов при биосинтезе антибиотиков.
8-09-2015, 20:07