Используя специальные составы и увеличивая плотность тока при прохождении через электролит проводится:
— электрошлифование, т. е. сглаживание поверхности металлического каркаса путем равномерного истончения металла, при котором вес отливки может уменьшиться на 20% [Соснин Г. П., 1981];
— электрополирование, т.е. получение зеркальной поверхности металлического каркаса при нахождении в этиленгликолевых электролитах в течение 5—7 мин. при плотности тока 5—6 А/дм2 .
Для очистки и электрополирования металлических зубных протезов используется отечественная установка Катунь, имеющая ванночку для заливки 18% раствором соляной кислоты. В кислоту погружают протез, фиксированный пластмассовым зажимом на вертикальной штанге, служащей анодом. Время травления составляет 10 мин., при плотности тока 0,4 А/см2 . Следует помнить, что работа установки Катунь должна проводиться при условии достаточной вентиляции. При отсутствии условий для вентиляции предлагается [Петрикас О.А., 1998] использование специальных растворов с пониженной токсичностью:
— соляная кислота 260 мл/л + поваренная соль 104 г/л + щавелевая кислота 42 г/л (при плотности тока 0,5 А/см2 и экспозиции 6,4 мин.);
— соляная кислота 276 мл/л + поваренная соль 92 г/л (при плотности тока 0,6 А/см2 и экспозиции 10 мин.).
Для электрохимической полировки многие фирмы производят специальное оборудование. Так, например, фирмой “Шулер-Дентал” (Германия) выпускаются аппараты Электропол, Унопол и Вариант для электрохимической полировки и аппараты для золочения Ауро-Плат и Квик-Плат.
В аппарате Электропол имеются две встроенные в корпус и изолированные друг от друга ванночки объемом по 1,5л. Заполнение ванночек электролитом проводится раздельно. Каждая ванночка имеет свой пульт управления (сила тока, таймер), что позволяет проводить одновременную полировку двух каркасов дуговых (бюгельных) протезов. При этом каркас, фиксированный в специальные зажимы, совершает вращательные движения. Аппарат имеет пластмассовый корпус, металлические кислотостойкие части.
Аппарат Вариант отличается от вышеназванного тем, что две ванночки для электролита находятся вне корпуса прибора.
Подобный Варианту аппарат Унопол меньшей мощности (80 Вт) предназначен для электрохимической полировки одного каркаса дугового (бюгельного) протеза.
Для проведения полировки необходима сила тока 3,5—4,5 А, а электролит должен быть подогрет до температуры 35—45° С.
Аура-Плат —
аппарат для ускоренного золочения кламмеров, каркасов дуговых (бюгельных) протезов и сплава для металлокерамики.
При этом каркасы протезов фиксируются вне аппарата с помощью электродов-зажимов типа “крокодил”. Одновременно с процессом обезжиривания поверхности каркаса происходит золочение.
Для этого разработана специальная жидкость, в которой содержание золота составляет 2 г/л. Она не требует предварительной подготовки, обладает высокой химической устойчивостью, экономически выгодна. Скорость осаждения золота составляет 0,2 мкм/мин. при силе тока в 300 мА.
Другой аппарат для ускоренного золочения Квик-Плат имеет ванночку объемом 1,25 л вне корпуса прибора. Этот аппарат особенно пригоден для золочения готовых дуговых и мостовидных протезов, коронок. При этом отпадают необходимость электролитического обезжиривания и предварительного золочения. Плавная регулировка силы тока (до 3 А), наличие амперметра позволяют контролировать силу тока и скорость осаждения при золочении. Содержание золота в жидкости Квик-Плат составляет 2 г/л.
Для соединения элементов протезов в единую конструкцию используется, в частности, паяние.
• Паяние — процесс получения неразъемного соединения путем нагрева места паяния и заполнения зазора между соединяемыми деталями расплавленным припоем с его последующей кристаллизацией.
• Припой— металл или сплав, заполняющий зазор между соединяемыми деталями при паянии.
Существует различная техника паяния: в пламени, печи. При работе с каркасами до нанесения и обжига керамической массы предпочтительнее использовать паяние в пламени. Паяние в печи применяется на объектах, уже облицованных керамикой. Прочность пайки можно проверить различными методами с помощью растяжения и изгиба.
Физико-механические свойства припоя (цвет, узкий температурный интервал плавления, стойкость против коррозии) должны максимально соответствовать таковым у сплава, из которого изготовлены требующие соединения элементы каркаса протеза.
Во время паяния соединяемые места принимают температуру расплав-ленного припоя. Поэтому температура плавления припоя должна быть ниже температуры плавления спаиваемых частей на 50—100° С, т. к. в противном случае паяние привело бы к частичному расплавлению спаиваемых деталей протеза.
Расплавленный припой обладает текучестью, которая увеличивается с повышением температуры, т. е. припой течет в направлении от холодных частей к горячим. Фактически на этом свойстве и основано использование пламени горелки в процессе паяния. В месте соприкосновения деталей и припоя происходит диффузия одного металла в другой. Скорость диффузии зависит, главным образом, от материала протеза и припоя, а также от температуры. Все это вместе взятое и определяет структуру полученного шва, которая может быть в виде твердого раствора, химического соединения или механической смеси.
Твердый раствор является наиболее благоприятной структурой и считается лучшим видом паяния. Шов хорошо противостоит коррозии и получается прочным. При этом максимальная прочность шва будет при использовании минимального количества припоя. Следует помнить, что прочность большинства припоев ниже прочности соединяемых металлов, хотя прочность шва за счет диффузии выше.
Расплавлять припой в процессе паяния необходимо как можно быстрее, а после получения шва источник нагрева (горелку) необходимо немедленно удалить.
Так как паяние чаще происходит при нагревании открытым пламенем, то на поверхности спаиваемых металлов может образоваться пленка окислов, которая препятствует диффузии припоя. Особенно усиленно образуется эта пленка у сплавов, содержащих хром, отличающихся высокой способностью пассивироваться, т.е. покрываться окисной пленкой. Поэтому в процессе паяния необходимо не только расплавить припой и заставить его разлиться по спаиваемым поверхностям, но и не допустить образования окисной пленки к моменту достижения рабочей температуры в спаиваемых деталях. Это достигается применением различных паяльных веществ или флюсов.
• Флюс — химическое вещество (бура, борная кислота, хлористые и фто-ристые соли), служащее для растворения окислов, образующихся на спаиваемых поверхностях металлов при паянии.
Наибольшее распространение в качестве флюса получила бура, белое кристаллическое вещество (Na2 B4 О7 * 10H2 О). Ее добывают из природных месторождений или получают из борной кислоты взаимодействием с кристаллической содой. При нагревании она постепенно теряет воду, и температура ее плавления достигает 741° С. Кроме того, бура поглощает кислород, препятствуя тем самым образованию на поверхности металла окислов, и способствует лучшему растеканию припоя.
Флюсы, как и окалину, удаляют с поверхности металлов отбелами.
Кроме паяния используется другой вид соединения элементов протеза в единую конструкцию — сварка, при которой расплавленные элементы (детали) протеза сливаются и образуют однородное монолитное соединение.
• Сварка — процесс получения неразъемного соединения деталей кон-струкции при их местном или общем нагреве, пластическом деформировании или при совместном действии того и другого в результате установления межатомных связей в месте их соединения.
В промышленности существуют способы сварки, при которых материал расплавляется (дуговая, электрошлаковая, электроннолучевая, плазменная, лазерная, газовая и др.), нагревается и пластически деформируется (контактная, высокочастотная, газопрессовая и др.) или деформируется без нагрева (холодная, взрывом и др.); способ диффузионного соединения в.вакууме.
В отличие от паяных соединений сварные швы отличаются совершенно однородной структурой, т. к. используемый присадочный материал имеет такое же химическое строение и свойства, что и свариваемые детали. Другими словами, в этой технологической операции используется тот же самый сплав, который был использован при получении соединяемых элементов протеза.
Кроме того, сварные швы обладают более высокой прочностью и устойчивостью к коррозии. В отличие от них в области паяния возникает коррозия. Это объясняется разницей напряжения между сплавом и припоем.
К преимуществам плазменной микросварки, применяемой в ортопедической стоматологии, например с помощью установки типа Микро – PW 10, следует отнести следующие:
— плазменная микроструя, в которой в качестве плазмообразующего газа применяется аргон, соединяет самые твердые металлы, например, сплавы на основе СгСоМо, в узких пределах зоны плавления (даже вблизи пластмассовых частей) путем слияния расплавленной заготовки, без применения дорогостоящих припоя и флюса;
— значительно большая прочность по сравнению с паянием;
— отсутствие остатков флюсов на сварном шве.
Между электропроводящей заготовкой и плазменной струей образуется электрическая дуга большой плотности энергии и высокой температуры. Прибор является настольным, достаточно удобным в использовании. Диапазон настройки сварочного тока (0,3—10 А) можно регулировать в процессе работы с помощью ножного управления.
Место сварки защищается от окисления с помощью среды защитного газа (аргон/водород, 5—8% H2 ). Показаниями к применению микроплазменной сварки является соединение литых элементов протеза в единую конструкцию как при его изготовлении, так и при реставрации.
Сварочный столик фирмы “Брандерс” в настоящее время отвечает требованиям зубных техников, пользующихся микроплазменной сваркой. На столике имеются регулятор потока газа и подвижный рукав (крепление) для точечной сварки. Столик снабжен двумя-тремя сочленениями, которые дают возможность безупречного достижения контактов.
Подвижная сварочная пластина над сочленением может использоваться в различных рабочих положениях. Сварочный столик сконструирован таким образом, что может употребляться как рабочая подставка для сварки частей протеза из чистого титана.
Фирма “L-ТЕС” выпускает прибор для сварки Р W М-6, в котором качество сварочного соединения превышает таковое, получаемое при всех других способах соединения. Тепловое воздействие плазменной дуги на обрабатываемые объекты является незначительным. В качестве защитного газа используют аргон, что позволяет избежать образования окислов на поверхности свариваемых объектов. Метод сварки обеспечивает получение стабильных размеров соединяемых деталей и экономию припоя.
Аппарат точечной электросварки Дентафикс для всех сплавов из высококачественной стали дает возможность регулировать время сварки от 0,1 до 1,0 с и десятикратно понижать силу тока.
Другим видом сварки, применяемым в ортопедической стоматологии, является лазерная. Лазерная установка Хаас Лазер 44Р фирмы “Хереус Кульцер” (Германия) обеспечивает глубину сварки низкоуглеродистых кобальтохромомолибденовых сплавов до 2 мм при возможности изменений диаметра фокуса от 0,3 мм до 2 мм. На дисплее установки во время сварки отражаются все рабочие параметры.
IX . МАТЕРИАЛЫ ДЛЯ ОТДЕЛКИ СТОМАТОЛОГИЧЕСКИХ ИЗДЕЛИЙ (АБРАЗИВНЫЕ МАТЕРИАЛЫ)
Различные ортопедические аппараты, в том числе зубные, челюстные и лицевые протезы требуют тщательной отделки для придания им гладкой, полированной, блестящей поверхности. Помимо удобства и эстетики это повышает гигиенические качества аппарата, облегчая удаление остатков пищи и зубного налета.
Гладкая поверхность пластмассовых или комбинированных протезов лучше противостоит процессам набухания, старения и разрушения в результате перепада температур и воздействия продуктов жизнедеятельности.
Наконец, проведенные исследования показывают, что должным образом отполированная поверхность способствует коррозийной устойчивости металлов (сплавов) и повышению физико-механических свойств пластмасс различной структуры. Последнее относится и к пломбам, т. к. установлено, что полированная поверхность содействует правильному формированию свойств полимеров, цементов и даже амальгам.
• Абразивные материалы (от лат. abrasio — соскабливание) — мелко-зернистые вещества высокой твердости (корунд, электрокорунд, карборунд, наждак, алмаз и др.), употребляемые для обработки (шлифования, полирования, заточки, доводки и пр.) поверхностей изделий из металлов, полимеров, дерева, камня и т. д.
Абразивные материалы подразделяются:
1) но назначению — на шлифовочные и полировочные;
2) но связующему веществу — на керамические, бакелитовые, вулканитовые и пасты;
3) по форме инструмента (материала) — на круги различных размеров, тарельчатые, чашечные, чечевичные фрезы, фасонные головки (грушевидные, конусовидные и др.), а также наждачное полотно и бумага.
1. ШЛИФОВОЧНЫЕ СРЕДСТВА.
Поверхность зубного протеза обрабатывают сначала напильниками, шаберами, штихелями, точильными камнями. За этой грубой обработкой следует шлифовка, т. е. заглаживание оставшихся трасс (следов) наждачными бумагой или полотном. После окончательной отделки (полировки) изделие приобретает блестящую поверхность.
Зерна высокой твердости с острыми кромками могут быть в свободном (порошки), в связанном (наждачная бумага, полотно) и цементированном ви-де (круги, головки, сегменты, конусы, бруски и т. п.). В большинстве случаев шлифование является отделочно-доводочной операцией, обеспечивающей высокую точность (иногда до 0,002 мм) и чистоту поверхности (6—10-го классов).
Шлифование также применяют для обдирочной работы (при очистке литья), для заточки режущих инструментов и др. Наибольшее количество шлифовальных работ выполняют с использованием абразивных инстру-ментов.
Обработка материалов при помощи абразивов характеризуется учас-тием в процессе резания одновременно очень большого числа случайно рас-положенных режущих граней зерен абразива. Несмотря на то что форма ма-леньких “резцов” — зерен абразива — несовершенна, абразивная обработка весьма производительна, так как высокая твердость зерен позволяет приме-нять большие скорости резания, что в соединении с большим числом одно-временно работающих “резцов”, снимающих тонкие стружки, дает большой объем снятого материала. Важным свойством абразивного инструмента является его способность к частичному или полному самозатачиванию. Восстановление режущей способности объясняется тем, что при затуплении абразивных зерен возрастает усилие резания и зерна разрушаются или выкрашиваются, обнажая другие, расположенные ниже.
Абразивные материалы для шлифования делят на:
а) естественные (алмаз, корунд, наждак, кварц, минутник, пемза и др.);
б) искусственные (электрокорунд, карборунд/карбид кремния/, карбид бора, карбид вольфрама).
Как отделочный материал, абразивы, применяемые для шлифования, должны отвечать определенным требованиям:
— твердость применяемых материалов должна быть не ниже твердости шлифуемого материала; шлифовальный инструмент “засаливается”, если его твердость излишне велика для обработки данного материала, или преждевременно изнашивается, если эта твердость мала;
— форма зерен абразива должна быть многогранной для обеспечения острия резания;
— материалы должны быть технологичны в применении; обладать способностью склеиваться (скрепляться) и хорошо удерживаться в связующем веществе.
Самым твердым минералом является алмаз, представляющий собой кристаллическую форму углерода. В виде пыли, наклеенной на металли-ческие диски и круги, он служит для препарирования зубов перед покрытием их коронками.
Многими фирмами-производителями стоматологической продукции освоен выпуск инструментов, укомплектованных в наборы для проведения конкретных манипуляций. Так, например, фирма “Медстар” (Великобри-тания) выпускает набор алмазных боров для терапевта и набор алмазных боров для ортопеда. Набор алмазных боров для ортопеда фирмы “Майли-фер” (Швейцария) представлен борами самой разной формы, размера и сече-ния для препарирования зубов под металлокерамические несъемные протезы. Самые разнообразные по размеру, форме и назначению боры производит фирма “СС-Вайт” (США).
При обработке керамики наиболее ценными качествами в алмазном диске для зубного техника являются гибкость, небольшая толщина и эффективное резание.
Такой инструмент необходим для создания эстетически тонких промежутков между передними искусственными зубами. По данным фирмы “Ренферт” (Германия), инструмент Турбо-Флекс позволяет получить желаемый результат. Существенную роль при этом играет V-образная выемка в диске. Последний имеет толщину 0,15 мм, покрыт с двух сторон алмазной крошкой. Уже при легком давлении достигается эффективное резание керамики.
Люминесэнс — набор для полирования алмазным порошком с частицами одного размера, что позволяет, как указывает его поставщик фирма “Премьер-Дентал” (США), наполовину сократить затраты времени и получить при этом хорошо отполированную и блестящую поверхность композиционных материалов, фарфора, стеклоиономеров, благородных металлов и эмали зуба.
Полирующий гель имеет предельно высокую концентрацию частиц алмаза микронного размера, что сокращает время полировки до двух минут. Гель наносят с помощью войлочного аппликатора, который не повышает температуру и обеспечивает легкий доступ к любой поверхности зуба.
Корунд — занимает второе место по твердости, он представляет собой кристаллическую форму окиси алюминия (Аl 2 O3 ). В чистом виде (рубин, сапфир) он встречается редко, чаще с различного рода примесями (соединениями железа и кремния). В такой форме он представляет собой непрозрачный кристалл синевато-серого, грязно-желтого или серо-коричневого цвета, обладающий очень большой твердостью и содержащий до 90% и более глинозема.
Корунд изготавливается также искусственным путем из минерала боксита, в котором глинозем содержится не в кристаллическом, а в аморфном виде. Для получения кристаллического глинозема (корунда), производится плавка боксита в смеси с коксом. Твердость искусственного корунда с увеличением содержания окиси алюминия повышается. Особотвердые высшие сорта корунда применяются для шлифовки прочных сталей.
Фирма “Шулер-Дентал” (Германия) производит электрокорунд Алу-страл , в котором оксид алюминия составляет 99,5%. Применяется в песко-струйных аппаратах для обработки сплавов металлов. Это самый твердый и одновременно безвредный осколочный продукт в группе электрокорундов.
Порошки Микро Этчер фирмы “Дэнвил” для внутриротового песко-струйного аппарата с оксидом алюминия (50 мк) применяются с целью улуч-шения ретенционных свойств металлических, фарфоровых и пластмассовых поверхностей несъемных протезов при их реставрации.
Фирма “Бего” (Германия) производит Алокс — антимагнитный альфа-корунд (содержит 99.6% оксида алюминия) с острокромочной формой зерна (50 мкм, 110 мкм и 250 мкм) и высокой твердостью.
Как искусственный, так и естественный корунд употребляется для изготовления шлифовальных камней и порошка для шлифования.
Наждак — шлифовальный материал, добывается из горной породы. В его состав входят корунд, соединения окиси железа и другие материалы. Твердость наждака близка к твердости корунда. Наждачный порошок при-меняют для шлифования и изготовления наждачного полотна и наждачной бумаги. Шлифовальные качества зависят от процентного содержания корун-да. Наждачную бумагу и диски применяют для шлифования протезов и пломб.
Карборунд получают искусственным путем, для чего смесь, состоящую из кокса, чистого кварцевого песка, древесных опилок и поваренной соли, плавят в электропечи. Он состоит из кристаллов карбида кремния. Зерна карборунда отличаются остротой своих граней и высокой твердостью. Су-щественным недостатком карборунда является значительная хрупкость. Его зерна легко раскалываются при нагрузке. Карборунд применяется главным образом в виде шлифовальных кругов и дисков.
Пемза — горная порода, образованная при вулканических извержени-ях, имеет пористое строение. Края пор очень острые. Цвет пемзы в зависи-мости от содержания окислов железа бывает разным: от белого и голубого до желтого, красного и даже черного.
К шлифовочным материалам также относятся кварц, фарфор и стекло. Так, например, фирма “Шулер-Дентал” (Германия) производит Ауробласт и Ауробласт-С, которые относятся к минеральным неметаллическим абразив-ным порошкам из стекла разной зернистости с особо длительным сроком службы.
Для изготовления абразивных инструментов применяются связующие материалы. Назначение их сводится к скреплению (цементированию) абра-зивных зерен после их измельчения и просеивания через сита с определен-ным количеством отверстий.
Связующие материалы делят на:
— керамические;
— бакелитовые;
— вулканитовые.
Керамические связующие материалы
основаны на применении
8-09-2015, 20:53