Основные этапы непрямого ИФА для определения антител:
1. Антиген адсорбируют на твердой фазе, затем отмывают от несвязавшихся компонентов.
2. Блокируют свободные месга связывания. Отмывают.
3. В лунки вносят исследуемый материал, инкубируют и затем проводят процедуру отмывки. Параллельно ставят пробы с положительным и отрицательным контролями.
4. Добавляют антиглобулиновый конъюгат в рабочем разведении, инкубируют, отмывают от несвязавшихся компонентов.
5. Вносят субстрат, инкубируют. По достижении оптимального уровня окрашивания в лунках с положительным контролем реакцию останавливают, добавляя стоп-раствор.
6. Измеряют количество продукта реакции на ИФА-ридере (рис.3).
При оптимальных условиях проведения анализа метод высокоспецифичен и чувствителен. Он позволяет выявлять нанограммовые количества антител в сыворотках исследуемых больных. Для получения удовлетворительных результатов необходима стандартизация реагентов и методических приемов. Этот вариант ИФА может также использоваться для тестирования моноклональных антител.
«Сэндвич» – вариант ИФА для выявления антигенов.
Антигены, определяемые с помощью данного варианта ИФА, должны иметь несколько эпитопов, способных связывать антитела, или обладать повторяющимися, пространственно разделенными эпитопами одинаковой специфичности.
При проведении этого варианта ИФА высокоспецифичные поли- или моноклональные антитела, адсорбированные на твердой фазе, инкубируют с исследуемым образцом. После процедуры отмывания в лунки вносят меченные ферментом антитела (конъюгат) к тому же антигену и далее проводят все остальные этапы реакции. Эффективность образования специфического комплекса на каждой стадии анализа зависит от константы связывания реакции антиген-антитело.
Основные этапы анализа:
1. На твердой фазе иммобилизуют моноклональные антитела или аффинно-очищенные поликлональные антитела.
2. В лунки панелей вносят исследуемый образец, параллельно ставят положительный контрольный образец и отрицательный контрольный образец в различных разведениях. Инкубируют и отмывают.
3. В лунки вносят меченные ферментом моноклональные или поликлональные антитела – конъюгат. После инкубации проводят отмывку.
4. Вносят субстрат, инкубируют. Реакцию останавливают при достижении оптимального окрашивания в лунках с положительным контролем.
5. Учет результатов на ИФА-ридере.
Основным достоинством метода является высокая чувствительность, превосходящая возможности других схем ИФА (рис.4).
Рисунок 3. Непрямой ИФА для выявления антител.
Конкурентный ИФА.
Этот вариант анализа основан на конкуренции меченых (конъюгат) и немеченых (исследуемых) антител за связывание с антигеном, адсорбированным на твердой фазе. Количество фермента, присоединившегося к твердой фазе, уменьшится пропорционально содержанию в смеси свободных антител. Для определения антигена используется тот же вариант, но в этом случае искомый антиген конкурирует с меченым, стандартным антигеном за связывание с антителами, иммобилизованными на поверхности твердой фазы.
Конкурентный метод требует минимального числа операций, незначительного расхода реагентов и легко может бытъ автоматизирован. При проведении конкурентного ИФА для выявления антител лучше использовать меченые моноклинальные антитела, тогда конкуренция конъюгата с исследуемым образцом происходит за единственный эпитоп адсорбированного на твердой фазе антигена. Этот вариант ИФА применяется для определения различных соединений, таких как иммуноглобулины человека, раково-эмбриональный антиген, инсулин и др. Он позволяет выявлять антитела к диагностически значимым эпитопам инфекционных агентов.
Основные этапы анализа для выявления антигена (рис.5):
1. На твердой фазе иммобилизуют специфические для выявляемого антигена моноклональные антитела.
2. В лунки панелей вносят в известной концентрации антиген, меченный ферментом, и исследуемый образец. Проводят инкубацию и отмывку. Параллельно в соседних лунках ставят положительный и отрицательный контроли. Для построения калибровки используют стандартный немеченый антиген в различных разведениях.
3. Добавляют субстрат, инкубируют, останавливают реакцию при развитии оптимального окрашивания в лунках с положительным контролем.
4. Учет реакции на ИФА-ридере.
В этом случае количество антигена в исследуемом образце обратно пропорционально ферментативной активности на твердой фазе.
Ингибиторный ИФА.
В этом варианте ИФА антиген, присутствующий в исследуемом образце, связывается с моноклональными антителами, меченными ферментной меткой, и ингибирует их взаимодействие со стандартным антигеном, иммобилизованным на твердой фазе. Присутствие в образце даже следовых количеств специфичного к конъюгату антигена будет ингибировать связывание меченых антител с иммобилизованным антигеном. Степень ингибирования прямо пропорциональна содержанию антигена в растворе. Для проведения количественного анализа строят кали6ровочную кривую с помощью последовательных разведений стандартного антигена. Основные этапы ингибиторного ИФА для выявления антигена (рис.6).
1. В лунках панелей адсорбируют стандартный антиген. Подбирают рабочее разведение меченых антител с помощью титрования.
Рисунок 4. «Сэндвич»- вариант ИФА.
2. Проводят предварительную инкубацию конъюгата в разведении, предшествующем рабочему, с разведениями исследуемого образца, стандартного антигена и положительных контрольных проб.
3. Смесь переносят в лунки панелей. Для контроля 100%-ного связывания в несколько лунок вносят только меченые антитела, без ингибирующего антигена. Панели инкубируют, затем проводят отмывку.
4. Добавляют субстрат.
5. Проводят учет результатов.
Концентрация определяемого антигена в исследуемом образце обратно пропорциональна ферментативной активности на твердой фазе.
ИФА может использоваться не только для определения растворимого антигена или антитела, но и клеток, вырабатывающих различные белки.
Метод иммуноферментных пятен (ELISPOT).
В 1983 году адаптировали технологию твердофазного ИФА для определения лимфоидных клеток, секретирующих антитела или антигены (например, цитокины), in vitro. Метод получил название ELISPOT (метод иммуноферментных зон или пятен). Основной принцип метода:
1. На поверхности полистироловой лунки (используют 24-х луночные панели для культивирования клеток) сорбируют антигены или антитела, которые служат «ловушечными» реагентами.
2. Добавляют исследуемые лимфоидные клетки, культивируют несколько часов при 37°С, давая им возможность занять определенное место и выполнить секреторную функцию. Антитела или антигены, секретируемые такими клетками, улавливаются адсорбированными на твердой фазе реагентами.
3. Клетки удаляют, используя для этого отмывающий раствор с детергентом, лизирующим клетки.
4. Участки накопления секреторных продуктов проявляют, добавляя связанные с ферментом антитела (антиглобулиновый реагент).
5. Добавляют смесь субстрата с агарозой (используемые субстраты должны растворяться в агарозе и образовывать нерастворимые продукты реакции), на поверхности твердой фазы образуются коричневые или голубые пятна (в зависимости от используемых ферментов и субстратов), выявляя участки, где располагались клетки.
• Образовавшиеся пятна подсчитывают под микроскопом, это и будет количество секретирующих клеток.
В качестве твердой фазы может быть использована нитроцеллюлозная мембрана В этом случае есть ряд преимуществ: из-за высокой адсорбционной способности НЦМ требуется значительно меньшее количество антигена, используемого в качестве «ловушечного» реагента, кроме того, отпадает необходимость во включении агарозы в субстрат.
При параллельном определении количества секретирующих клеток и общего количества секретируемого антигена или антитела в лунке, что возможно при использовании другого субстрата, можно выявить количество секретируемого вещества единичной клеткой.
Данный метод нашел широкое применение для оценки количества клеток, секретирующих антиген, улавливаемый адсорбированными антителами, используется для определения количества клеток, секретирующих цитокины (ИЛ-1, ИЛ-2, ИЛ-4, ИЛ-6, ИФН-у, ФНО-а).
Системы усиления сигнала.
При использовании высокоаффинных антител чувствительность отдельных вариантов ИФА очень высока и теоретически позволяет выявить единичные молекулы антигена, но на практике чувствительность ограничивается рядом факторов: активностью фермента, интенсивностью сигнала и методами учета сигнала. Системы усиления сигнала дают возможность повышать чувствительность различных вариантов ИФА. Рассмотрим некоторые такие системы:
На основе взаимодействия авидин-биотин.
Молекулы кофермента биотина (м.м. 244 Да) конъюгируют с антителами при помощи биотинил-N-гидроксисукцимида. Небольших размеров молекулу биотина проще присоединить к иммуноглобулину или другому белку без нарушения его иммунных или ферментативных свойств. Фермент в этом случае связывают с гликопротеином яичного белка авидином. Аффинносгь связывания авидина с биотином очень высока (константа диссоциации комплекса – 10-15 моль), конъюгат авидин-фермент прочно фиксируется на комплексе антиген-антитело-биотин. После добавления соответствующего субстрата проводят определение продукта реакции спектрофотометрически или по интенсивности люминесценции.
Одна молекула авидина состоит из четырех идентичных субъединиц, способна взаимодействовать с четырьмя молекулами биотина, что позволяет использовать его как связующую молекулу между двумя биотинсодержащими соединениями. В этом случае фермент тоже биотинилируют, а авидин выполняет функцию мостика, соединяя две молекулы, содержащие остатки биотина. К образовавшемуся комплексу антиген-антитело-биотин добавляют свободный авидин, а затем биотинилированный фермент. Проводят учет реакции.
Белок авидин может неспецифически сорбироваться на других молекулах, поэтому все чаще используют другой биотинсвязывающий белок - стрептавидин, обнаруженный в бактериях Streptomyces avidinii. Стрептавидин также образует прочный комплекс с биотином и состоит из четырех идентичных субъединиц.
Применение авидин-биотинового комплекса позволяет значительно повысить чувствительность ИФА, так как при синтезе конъюгата с одной молекулой АТ можно связать десятки молекул биотина. Получение конъюгатов (антител и ферментов с биотином) осуществляется достаточно легко и сопровождается минимальными изменениями их иммунологической и ферментативной активности. Конъюгаты ферментов с биотином могут быть использованы как универсальные реагенты.
Использование хемилюминесцентных реакций.
Хемилюминесцентные реакции можно использовать для получения сигнала в ИФА, при этом повышается чувствительность метода и сокращается время проведения анализа. В качестве метки в ИФА широко применяют пероксидазу хрена, для ее выявления можно использовать и различные хемилюминесцентные реакции. Хемилюминесцентные реакции основаны на способности люминола светиться при окислении перекисью водорода. В прямом анализе при ферментативной реакции образуется перекись водорода и окисляет люминол, катализатором этой реакции выступает пероксидаза хрена. Для усиления сигнала используются различные соединения, например, люциферин, фенолы, в этом случае интенсивность люминесценции усиливается в 10-100 раз, в отдельных вариантах в 500 раз (усиленный хемилюминесцентный анализ). Люминесцентный сигнал очень стабилен, его уровень достигает максимума за 30 с (для сравнения: цветная реакция с ОФД в качестве индикатора полностью развивается лишь за 30 мин).
При непрямом анализе люминолом или его производными метится антитело. Такая метка в свободном состоянии способна окисляться перекисью водорода с выделением света. Если она образовала комплекс, то теряет способность окисляться.
На основе каскадных систем.
Для повышения чувствительности ИФА можно использовать ферментные каскадные системы. В этом случае первый фермент, связанный с антителами, приводит к образованию восстанавливаемого субстрата для второй ферментной системы. Вторая ферментная система может быть субстрат-циклической или редоксициклической. Ферментными метками в этом случае могут служить фосфо-глюкоизомераза, альдолаза, щелочная фосфатаза. Конечный продукт реакции определяют визуально или спектрофотометрически.
Системы амплификации в ИФА позволяют добиться высокой чувствительности. Такие ИФА-системы используются для определения уровня гормонов (ти-реостимулирующего, прогестерона и др.).
Практическое применение ИФА.
ИФА нашел широкое применение в различных областях медицины и биологии благодаря относительной простоте и высокой чувствительности метода. ИФА успешно применяется для:
• массовой диагностики инфекционных заболеваний (выявление различных специфических антигенов или антител к ним);
• выявления и определения уровня гормонов и лекарственных препаратов в биологических образцах;
• определения изотипов (IgG, IgM и другие) антител против конкретного антигена;
• выявления иммунных комплексов;
• выявления онкомаркеров;
• определения белков сыворотки крови (ферритин, фибронектин и др.);
• определения общего IgE и специфических IgE антител;
• скрининга моиоклональных антител;
• определения цитокинов в биологических жидкостях.
Чувствительность метода
ИФА пришел на смену широко используемым ранее в клинической практике методам агглютинации, преципитации и РИА. По сравнению с вышеназванными методами ИФА менее трудоемок и менее продолжителен по времени, удобен для выполнения большого числа однотипных анализов.
В ИФА сочетается уникальная специфичность иммунохимического анализа с высокой чувствительностью определения ферментной метки. Чувствительность метода (под чувствительностью подразумевают минимальное выявляемое количество антител или антигена) определяется следующими факторами: аффинностью антител, предпочтительнее использование моноклональных антител; специфической активностью фермента; интенсивностью сигнала; чувствительностью учета сигнала. Различные варианты ИФА различаются по своей чувствительности. Отдельные варианты твердофазного ИФА позволяют выявлять в образце единичные молекулы. Средняя чувствительность ИФА – 10-9 – 10-12 моль.
Список литературы
Галактионов В.Г. Иммунология. Издательство Московского университета, 1998 г.
Кишкун А.А. Иммунологические исследования и методы диагностики инфекционных заболеваний в клинической практике. Медицинское информационное агентство, 2009 г.
Кондратьева И.А. Практикум по иммунологии. Учебное пособие для ВУЗов. Академия, 2004 г.
Лефковитс И., Пернис Б. Иммунологические методы исследования. Мир, 1988 г.
Ройт А., Бростофф Д., Мейл Д. Иммунология. Мир, 2000 г.
Соколов Е.И. Клиническая иммунология. Медицина, 1998 г.
Фримель Г. Иммунологические методы. Медицина, 1987 г.
Хаитов Р. М. Иммунология. Медицина, 2000 г.
Шигина Ю.В. Иммунология: Учебное пособие. Издательство РИОР, 2007 г.
Ярилин А.А. Основы иммунологии. Медицина, 1999 г.
9-09-2015, 00:39