Интерпретация квантовомеханических представлений с позиций волнового описания системности физических величин

А. С. Чуев, к.т.н. доцент Государственного университета управления, г. Москва.

В физике ... нет места для путанных мыслей ...

Действительно понимающие природу того или иного явления должны получать основные законы из соображений размерности.

Э. Ферми

В работе рассмотрены некоторые физические величины и закономерности квантовой механики с позиций логики строения дифференциальных уравнений, описывающих волновые процессы, а также системности физических величин, расположенных в LT- или MLT- размерностных элементах, имеющих планарное и упорядоченное размещение.

Приводится логический вывод уравнений Шредингера и объясняется происхождение так называемых операторов физических величин. Анализируются известные соотношения неопределенностей и системно обнаруживаемое расширение их числа и качественного вида. Исходя из системных представлений, предлагаются и рассматриваются известные и некоторые новые физические величины. С помощью представления о изоэнергетических электронных поверхностях атома дается физическое объяснение численного заполнения атомных электронных оболочек, которое получено без привлечения математического аппарата операторов физических величин.

Сделан вывод о том, что истинно (первоначально) квантуемыми величинами в составе водородоподобного атома являются длина волны, частота и скорость орбитального движения электрона, которые, в отличие от энергии, упорядоченно и целочисленно кратно (или дольно) изменяются с изменением порядкового номера орбиты.

В работе помещен раздел, касающийся плотности распределения квантовых состояний и физических представлений об этом, рассмотрены также и некоторые другие квантово механические представления.

Начало становления квантовой механики

Возникновение и начало становления квантовой механики связывают с открытием германским физиком Максом Планком (1900 г.) некой константы, связывающей энергию фотона с его частотой.

или (1.1)

В честь первооткрывателя эту константу назвали постоянной Планка. Значение h = (6,62618± 0,0004)× 10–34 Дж× с. Значение этой постоянной в 2π раз меньшее называют рационализированной постоянной Планка и обозначают той же буквой с чертой - . Позднее физическую величину, равную по размерности произведению энергии на время, американский физик Р. Фейнман назвал действием. В системе СИ размерность действия ML2T–1. Таким образом, постоянная Планка является элементарным квантом физической величины действия.

Следует остановиться на используемом здесь понятии кванта и квантуемой физической величины (в дальнейшем, ФВ). Например, почему-то часто говорят о дискретных уровнях и квантах энергии, но совсем не говорят о квантуемости масс элементарных частиц или атомов. Хотя неравномерная дискретность (прерывистость) величин в том и другом случаях очень похожи.

По нашему мнению, настоящей (истинно) квантуемой (или упорядоченно-квантуемой) величиной следует называть ФВ, изменение которой происходит отдельными порциями целочисленно кратными некой элементарной доле, меньше которой она и не бывает. К таким упорядоченно-квантуемым ФВ относится рассматриваемый здесь квант действия (постоянная Планка, точнее, половина ее величины). К таким же истинно квантуемым величинам можно отнести элементарный электрический заряд, квант магнитного потока и некоторые другие величины. Эти кванты ФВ являются фундаментальными физическими постоянными (ФФП), связанными между собой закономерными взаимосвязями. А взаимосвязи ФФП наиболее ярко выражают единство и целостность всей природы.

Открытие М. Планка было связано с решением проблемы правильного описания энергетики равновесного теплового излучения, которое к механике вроде бы и не имеет прямого отношения. Некоторая связь излучения с механическим движением появилась лишь после выдвижения А. Эйнштейном (в 1905 г.) корпускулярной теории электромагнитного излучения, объяснявшей явления фотоэффекта.

Самым заметным вкладом в начальное зарождение квантовой механики можно считать разработку датчанином Нильсом Бором (в 1913 г.) теории, объяснившей планетарную модель строения атома - ранее созданную известным физиком новозеландского происхождения Эрнстом Резерфордом.

Теория Н. Бора для атома водорода была сформулирована в виде трех постулатов [1]:

1. Электрон в атоме может двигаться только по определенным стационарным орбитам, каждой из которых можно приписать определенный номер n = 1, 2, 3, … Такое движение соответствует стационарному состоянию атома, обладающему неизменной полной энергией En. Это означает, что электрон, движущийся по стационарной замкнутой орбите, вопреки законам классической электродинамики, не излучает энергию.

2. Разрешенными стационарными орбитами являются только те, для которых угловой момент импульса L электрона равен целому кратному значению постоянной Планка . Поэтому для n-й стационарной орбиты выполняется условие квантования

n = 1, 2, 3,… (1.2)

3. Испускание или поглощение кванта излучения происходит при переходе атома из одного стационарного состояния в другое, при этом частота w излучения атома определяется разностью энергий атома в двух стационарных состояниях:

w nk = (Ek – En)/, k > n. (1.3)

Большой вклад в разработку основ квантовой механики внес французский физик Луи де Бройль, выдвинувший (в 1924 г.) идею о наличии волновых свойств у любых движущихся материальных частиц. Согласно гипотезе де Бройля свободно движущейся частице, обладающей энергией E и импульсом p, соответствует волновой процесс, частота которого

w = , (1.4)

а длина волны

l Б = . (1.5)

Как известно плоская волна частотой w , распространяющаяся вдоль оси x, представляется в комплексной форме выражением [1]:

x (x, t) = A exp[– i(w t – kx)], (1.6)

где A – амплитуда волны, а k = – волновое число.

Поэтому согласно гипотезе де Бройля, свободной частице (с энергией E и импульсом p), движущейся вдоль оси x соответствует плоская волна

Y (x, t) = A exp[– (Et – px)], (1.7)

распространяющаяся в том же направлении и описывающая волновые свойства частицы. Эту волну называют волной де Бройля. Связь параметров, как в волновом, так и в корпускулярном представлении микрочастиц осуществляется выражениями, включающими в себя постоянную Планка

E = , = , (1.8)

где – импульс частицы, а – волновой вектор. Эти выражения получили название уравнений де Бройля.

Глядя на уравнения (1.8) можно предположить что, если бы не было размерностных различий между энергией и частотой, а также между импульсом и величиной, обратной длине волны, то постоянная Планка в этих уравнениях вовсе была бы не нужна. Но данная мысль является уж слишком необычной, поэтому она требует отдельного обсуждения. Рассмотрим здесь вещи более привычные.

Из условия постоянства фазы волны (1.7)

(Et – px) = const (1.9)

определяется фазовая скорость волны де Бройля, которая равна

фаз = . (1.10)

Фазовая скорость всегда превышает скорость света в вакууме – с, поэтому ее принято считать фиктивной. Групповая скорость волн де Бройля гр, совпадающая со скоростью движения частицы определяется, с учетом соотношений (1.8), выражением

гр = . (1.11)

Дальнейшее развитие идей квантовой механики и ее становление в первую очередь обязано работам таких известных ученых физиков как Эрвин Шредингер, Вернер Гейзенберг, Макс Борн, Поль Дирак, Иордан, а также работам многих и многих других.

2. ВОЛНОВЫЕ УРАВНЕНИЯ КВАНТОВОЙ МЕХАНИКИ

Физическая теория, описывающая движение частиц, обладающих волновыми свойствами, первоначально получила название волновой механики. Однако это название вскоре было заменено другим – квантовая механика, так как оказалось, что волновая механика способна предсказывать дискретный характер или квантование различных параметров (ФВ) у движущихся микрочастиц.

Движение микрочастиц в квантовой механике описывается волновой функцией Y (x, y, z, t), подобной (1.7), но характеризующей поведение микрочастиц в трехмерном пространстве и времени. Иногда волновую функцию называют пси-функцией, по наименованию используемой для ее обозначения буквы.

Одним из постулатов квантовой механики является постулат о представлении волновой функции периодически меняющейся во времени и пространстве. Для стационарного случая волна принимается периодически меняющейся, но с неизменной плотностью распределения вероятности пространственного расположения микрочастицы.

Поскольку любая периодически меняющаяся функция может быть разложена в ряд Фурье, то волновую функцию принято описывать в суперпозиционном полигармоническом виде, приписывая каждой составляющей синусоидальный характер.

Общее временное уравнение Шредингера имеет вид

. (2.1)

Здесь – мнимая единица, а – рационализированная постоянная Планка. Стандартным символом D в (2.1) обозначен дифференциальный оператор Лапласа, который в декартовой прямоугольной системе координат определяется следующим образом:

D º . (2.2)

Уравнение Шредингера для стационарных состояний, образуемое из (2.1) при допущении, что Ψ- функция может быть представлена в виде произведения двух частей, зависящих: одна от пространственных координат, а другая от времени, имеет следующий вид

. (2.3)

Здесь малая буква ψ, в отличие от используемой в (2.1) большой буквы Ψ, обозначает лишь одну часть волновой функции, которая зависит только от пространственных координат. Вторая часть волновой функции, считающаяся находящейся в произведении с первой и здесь отсутствующая, зависит только от времени.

Почти все традиционные учебники физики, например [1, 2], говорят о невозможности выведения уравнений (2.1) и (2.3), приводя объяснение, что данные уравнения “сконструированы” или угаданы автором, точно также как в свое время были сконструированы или угаданы знаменитые уравнения Максвелла. Отдельные авторы считают, что вообще все природные закономерности устанавливаются лишь на основе опытных данных [1, стр.125].

С позиций системной взаимосвязи ФВ и системной обусловленности всех физических закономерностей, что изложено в работах автора [3-6], с таким заключением согласиться никак нельзя. Во-первых, системное и целостное представление природных закономерностей помогает формированию действительно научного мировоззрения [5, 6]. Во вторых, возможно выведение отдельных природных закономерностей привычным логическим путем. Оба эти направления необходимо раскрывать и показывать при обучении студентов физике, которую многие готовы признать - чуть ли не постулативной.

Система ФВ, варианты исполнения отдельных частей которой, применительно к рассматриваемой задаче, приведены на рис.1- рис.6, строится на упорядоченно расположенных LT- или MLT- размерностных элементах. ФВ непосредственно или с дополнительными размерностными коэффициентами многоуровнево входят в элементы системы. Закономерные взаимосвязи ФВ обнаруживаются в системе как их ближайшие системные связи или как попарное равенство произведений размерностей ФВ, располагаемых в элементах системы на противоположных вершинах выделенных параллелограммов. Более подробно эти моменты раскрыты в работе [4].

Применительно к рассматриваемой проблеме вывода волновых уравнений Шредингера следует уяснить ближайшие системные размерностные взаимосвязи ФВ действие. В системе по рис.3 и в последующих вариантах она названа действием актуальным, поскольку в квантовой механике (да и не только в ней) выявляется существование еще одного действия – это действие потенциальное, которое рассматривается чуть ниже.

Действие актуальное, квантом которого является постоянная Планка, связано через время с энергией и через длину с импульсом. В системном представлении ФВ по рис.1 - рис.4 эти связи хорошо видны.

Известна также и системно обнаруживается взаимосвязь кинетической энергии и импульса через массу микрочастицы (рассматриваем нерелятивистский случай):

. (2.4)

Далее можно идти чисто логическим путем.

Если волновая функция описывается синусоидой (или суммой синусоид), то первая производная этой функции будет косинус, который отстает по фазе от синусоиды на p /2.

Не принимая пока во внимание амплитудных и размерностных различий, мы можем установить фазовое равенство первой производной Ψ- функции по времени и ее самой, умножив эту первую производную на и приписав противоположный знак одной из сравниваемых величин.

Теперь ликвидируем размерностные отличия. Поскольку Ψ- функция от своей первой производной по времени отличается на размерность времени, то для получения размерностного равенства умножим Ψ- функцию на отношение энергии и постоянной Планка, являющейся квантом действия актуального.

Таким образом, получаем примерное размерностное соотношение:

, (2.5)

в котором W – представляет собой полную энергию, а коэффициент пропорциональности n - безразмерная числовая величина. С учетом соотношения (2.4) выражение (2.5) можно переписать в виде

, (2.6)

где в скобках фигурирует сумма кинетической и потенциальной энергий, называемая функцией Гамильтона.

Из представленной на рисунках системы (или просто из размерностных соображений) можно определить, что в выражении (2.6) импульс p можно представить - как отношение актуального действия (постоянной Планка) к длине. Коэффициент n возможно изменится, что непринципиально, а длина в минус второй степени в дифференциальных уравнениях, описывающих динамические волновые процессы, обычно представлена второй производной по направлению в пространстве (D ). Таким образом, мы логически приходим к уравнению (2.1). При этом размерность самой Ψ- функции может быть любой.

В общем случае числовой коэффициент n имеет не единственное, а множество значений, определяющих амплитуды различных гармоник Ψ- функции. Эти значения устанавливаются решением дифференциального уравнения с учетом начальных условий.

Заметим, что отношение квадрата постоянной Планка к удвоенному значению массы, представляющее по размерности произведение энергии на площадь, присутствует в правой части уравнения (2.1) вполне логично. Системные соотношения этой ФВ рассмотрены в разделе 4. В атомной физике эта величина характеризует изоэнергетическую поверхность, называемую поверхностью Ферми.

Однако использование временного уравнения Шредингера в форме выражения (2.1) не всегда может быть оправданным. Дело в том, что постоянная Планка сама представляет собой соотношение энергии с частотой (а также произведение импульса на длину волны), поэтому ее использование в формулах одновременно с указанными величинами ведет, как правило, к сильному затуманиванию в этих формулах физической сути явлений.

Если разделить обе части уравнения (2.1) на , то ситуация становится несколько яснее. Временное уравнение Шредингера принимает вид:

. (2.7)

Отношение потенциальной энергии U к постоянной Планка есть частота, а отношение постоянной Планка к массе, является физической величиной, называемой кинематической вязкостью (в термодинамике это коэффициент диффузии). Вот такие физические параметры, скорее всего, и определяют изменение пси-функции во времени.

Используя выражение (2.7) возможно осуществить простейший переход к волновому описанию стационарного состояния, что достигается приравниванием этого выражения нулю (поскольку изменения во времени принимаются отсутствующими). Сменив обозначение пси-функции на стационарное и сгруппировав одноименные величины, из (2.7) можно получить:

(2.8)

В сравнении с выражением (2.3), называемым уравнением Шредингера для стационарных состояний, здесь отсутствует (не учтена) только кинетическая энергия Е.

Если вышерассмотренным способом анализировать с самого начала выражение (2.3), то оно легко выводится из следующих логических соображений. Синусоидальная y - функция будет равна своей собственной второй пространственной производной с обратным знаком (без учета амплитудных различий), если ее умножить на квадрат отношения импульса к действию актуальному.

В действительности мы это и наблюдаем, если выражение (2.3) переписать несколько иначе:

. (2.9)

Подкоренное выражение в этой формуле представляет собой квадрат импульса, а общий коэффициент при втором члене слева (при ψ) представляет собой квадрат волнового вектора k, так что в итоге мы приходим к выводу о том, что уравнение Шредингера для стационарных состояний это обычное волновое уравнение гармонических стационарных колебаний:

. (2.10)

Если взять не вторую, как в выражении (2.10), а первую пространственную производную пси-функции, представленной в общем виде, и построить дифференциальное уравнение на сравнении этой производной с самой Ψ- функцией, то мы получим уравнение с известным в квантовой физике оператором проекции импульса (формула 3.61 учебника [1]):

. (2.11)

Из этого уравнения определяются возможные значения px. Запись последнего выражения становится более понятной с использование в уравнении волнового вектора

. (2.12)

Решением уравнения (2.12) является гармоническая функция вида

. (2.13)

Считается, что собственные значения оператора проекции импульса px образуют непрерывный спектр значений от - до + . Однако, при ограничении пси-функции по координате спектр значений волнового вектора обязательно становится дискретным. Причем получаемые дискретные значения будут целочисленно кратны основному значению, определяемому максимально возможной длиной волны (вернее ).

Исходя из представленных и ряда иных соображений, можно предположить, что используемые в квантовой механике так называемые операторы ФВ, по сути, есть искусственные образования. Они представляют собой комбинации ограниченного числа ФВ (действия актуального, энергии и импульса) с операторами дифференцирования, изымаемыми (совместно с указанными ФВ) из начальных дифференциальных уравнений, описывающих волновое представление микрочастиц.

В этой связи можно поставить под сомнение оправданность применения в квантовой механике операторов ФВ, как не имеющих физического смысла. Тем более что используются еще и операторы квадратов ФВ.

По крайней мере, с системных позиций никак не подтверждается постулат квантовой механики о том, что в ней каждой ФВ ставится в соответствие определенный оператор, а соотношения между операторами имеют ту же структуру, что и соотношения между ФВ. Построить или изобразить систему операторов ФВ, структура которой была бы подобна структуре размерностной системы самих ФВ (или имела хотя бы какой-то свой смысл), никак не получается.

Можно отметить, что применение операторного метода в квантовой механике, раз он так широко используется, видимо в какой-то мере и оправдано,


29-04-2015, 02:08


Страницы: 1 2 3
Разделы сайта