Генетика

- отсутствие розововидного гребня, В - гороховидный гребень, в - отсутствие гороховидного гребня. Если в обеих парах генов присутствуют доминантные аллели А-В-, то возникает новая форма гребня - орехововидный гребень, при генотипе аавв у кур развивается так называемый обыкновенный или листовидный гребень.

2. Эпистаз. При эпистатическом взаимодействии одна пара генов может подавлять действие другой пары генов. Например, у лошадей масть определяется двумя парами генов. В одной паре генов доминантный аллель А определяет серую окраску (раннее поседение). Этот доминантный ген подавляет действие не только аллельного ему рецессивного гена а, но и подавляет проявление другой пары генов, определяющих масть (вороную, рыжую, гнедую), вне зависимости от того, является эта пара рецессивной или доминантной гомозиготой или гетерозиготой - окраска лошади будет только серой (лошади с генотипами ААвв, Аавв, ААВВ, АаВВ или АаВв). Масть лошади может проявится только в том случае, если первая пара генов перейдет в рецессивное состояние (вороные лошади должны иметь генотип ааВв или ааВВ, а рыжие - аавв). Ген, подавляющий действие неаллельного ему гену, называется эпистатическим или геном-супрессором, а подавляемый - гипостатическим.

Выше был рассмотрен пример, где ген-супрессор был доминантным, но бывают случаи, когда подавляющее действие ген может проявлять только в рецессивном состоянии. Можно привести редкий пример эпистаза в случае наследования группы крови у человека. Несколько раз были зарегистрированы случаи, когда люди, имеющие генотипы второй или третьей групп крови, имели первую группу крови. Оказалось, что в их генотипе присутствовал ген х, находящийся в гомозиготном рецессивном состоянии хх, поэтому подавлял синтез агглютинина. Итак, человек, имеющий генотип IBI0хх, должен иметь в теории третью группу крови, обладает первой группой крови, для которой характерно отсутствие агглютинина.

3. Полимерия. Многие признаки определяются несколькими парами генов. Это характерно, в основном, для количественных признаков, таких как яйценоскость у кур, жирность молока у коров. Впервые это явление было впервые установлено Г. Нильсоном-Эле, который изучал наследования окраски семян овса. В результате многократных скрещиваний он получил семена, чей цвет варьировался от желтого до черного через промежуточные оттенки серого разной интенсивности. Цвет семян определялся двумя парами генов. Доминантные гомозиготы по обеим парам имели черную окраску, а рецессивные гомозиготы - желтую. Промежуточные формы имели серую окраску, причем было установлена прямая зависимость интенсивности окраски от числа доминантных аллелей; так организмы с генотипом АаВв были темнее, чем с генотипом Аавв, но светлее, чем с генотипом ААВв.

Признак может определятся и более, чем двумя генами. Например, у человека интенсивность окраски кожи определяется несколькими парами генов. Было выдвинута теория, что цвет кожи зависит от пяти пар генов. Самая темная кожа (у негроидной расы) будет определятся генотипом ААВВССDDЕЕ, тогда как у мулата будут присутствовать рецессивные аллели, а у европеоидной расы генотип будет ааввссddее. Принцип полимерного наследования можно записать в виде неравенства:

ААВВСС<…<АаВвСс<…<ааввсс

4. Плейотропное действие гена. При плейотропном действии гена один ген определяет развитие или влияет на проявление нескольких признаков. Это свойство генов было хорошо исследовано на мышах. Из схемы, видно, что ген определяет несколько признаков и признак определяется несколькими генами, поэтому можно сделать вывод, что плейотропное действие гена неразрывно связано с полимерным взаимодействием генов.

Поподробнее можно рассмотреть действие одного гена на ряд признаков на примере карликовости у мышей. Карликовые мыши получились в результате мутации и их изучение началось в Гарвардском университете в 1929 году. При скрещивании фенотипически нормальных мышей ? были карликовыми, из чего был сделан вывод, что карликовось обусловлена рецессивным геном. Рецессивные гомозиготы прекращали расти на второй неделе, были неспособны к размножению, внутренние органы, особенно железы внутренней секреции, имели измененную форму, мыши были менее подвижны и плохо переносили перепады температур.

Ген карликовости определял ненормальное развитие гипофиза, который, в свою очередь, определял раннюю остановку роста (изменение пропорций тела), ненормальное развитие половых желез (следовательно, стерильность), ненормальное развитие щитовидной железы, которое определяло пониженный обмен веществ, поэтому карликовые мыши были чувствительны к холоду, но более стойкие к голоду. Это цепочка последовательного изменения признаков при дефекте только одного гена. Пример плейотропного действия гена у человека - наследование дефекта ногтей и дефекта коленной чашечки, за которое отвечает один ген.

5. Летальные гены. Летальность генов - одна из разновидностей плейотропного действия гена. Так один ген, определяющий какой-либо признак, влияет так же на жизнеспособность в целом.

Ярким примером летальности гена служит ген платиновости у лисиц. До 30-х годов ХХ века не было платиновых лисиц, а были только серебристые. Этот ген появился тогда в результате мутации. Платиновый мех вошел в моду и стал очень дорогим, поэтому перед селекционерами встала задача вывести породу платиновых лисиц, то есть вывести чистую линию платиновых лисиц. Было установлено, что ген платиновости - доминантный. Для получения чистой линии скрещивали платиновых лисиц, из которых, по закону Менделя, одна четверть должна быть гомозиготной по доминантному гену. Но при дальнейшем скрещивании потомков у них все равно встречались серебристые щенки, что свидетельствовало об их гетерозиготности. Усомниться в правильности второго закона Менделя было невозможно, поэтому стали искать другие причины. Оказалось, что соотношение платиновых щенков к серебристым было 2 к1, что тоже противоречило закону Менделя, но был установлен другой факт - у платиновых лисиц в помете было 3-4 лисят, тогда как норма - 4-5 лисят. Из этого было установлено, что доминантные гомозиготы погибают в период эмбрионального развития, поэтому выведение чистой линии оказалось невозможным. Ген, определяющий смертельное нарушение развития в эмбриональный период, называется летальным. Интересно заметить, что в гетерозиготном состоянии мутантный ген не приводил к летальным последствиям, тогда как проявлялся в гомозиготном, поэтому можно сделать вывод, что летальный ген рецессивный. Значит, плейотропный ген может быть одновременно и доминантным, и рецессивным по разным своим проявлениям (в данном случае рассматриваемый ген доминантный для окраски, но рецессивный для летальности. Летальность может также определятся доминантным геном, но в этом случае потомок погибает до рождения или в раннем детстве, поэтому не может иметь потомства и передать этот ген по наследству.

Помимо летальных генов существуют сублетальные гены, которые вызывают врожденные заболевания, ведущие к смерти в детстве до наступления половозрелости, хотя есть и исключения. Примером доминантного сублетального гена является ген, определяющий заболевание ретинобластомой, при котором в раннем детстве развивается раковая опухоль в глазу. Раньше это заболевание всегда приводило к смерти, а сейчас проводят операции, спасающие от смерти, но приводящие к слепоте на один или на оба глаза.

Модификационная изменчивость.

Модификационная изменчивость относится к ненаследственной изменчивости. Она отражает взаимодействие генотипа и среды. Под влиянием среды изменяется только фенотип, а генотип остается неизменным, поэтому модификационная изменчивость не наследуется. Модификационная изменчивость четко прослеживается у растений, так как они во многих случаях размножаются вегетативным путем, поэтому большое число организмов может обладать одинаковым генотипом. Рассмотрим модификационную изменчивость у картофеля. Все клубни одного растения имеют одинаковый генотип, однако клубни все разного размера и формы. Это объясняется тем, что условия их развития отличались: некоторые клубни получали больше воды или питательных веществ, другие меньше. Если же высадить клубни одного растения в разную почву, то и растения получатся разные: например, если высадить в благоприятную почву маленький клубень, а в скудную - большой, то в первом случае вырастет большое растение, а во втором - хилое, слабое растение небольших размеров, что еще раз подтверждает изменение фенотипа под влиянием среды.

У животных одинаковых генотипов не существует, за исключением случаев однояйцевых близнецов, имеющих абсолютно идентичные генотипы. Они представляют особенный интерес для исследования. Однояйцевые близнецы рождаются иногда у крупного рогатого скота, у свиней и овец, но случается это редко. Если однояйцевых близнецов свиньи кормить по разному, то рост и вес у них будет различным. Если же свиней с различными генотипами одинаково кормить, то окажется, что для каждой свиньи будут свои пределы, до которых она может прибавлять в весе. Эта граница называется нормой реакции, которая определяет диапазон изменения фенотипа под влиянием внешней среды. Норма реакции для каждого организма разная. Тогда как модификационная изменчивость не наследуется, норма реакции является наследственным признаком. Куры одной породы, имеющих определенную яйценоскость, будут передавать своим потомкам уровень своей яйценоскости, и даже при самых благоприятных условиях яйценоскость потомков не превысит яйценоскость родительских особей.

Модификационная изменчивость является важной для приспособления организмов к изменяющимся условиям. Она обладает следующими особенностями:

a) Модификационная изменчивость носит направленный характер и является адекватной реакцией организма на изменившиеся условия. На солнце у людей для защиты от вредного излучения не начинают, например, расти уши, а начинает вырабатываться пигмент меланин, кожа становиться темнее, т.е. организм адекватно прореагировал на изменившуюся среду.

b) Модификационная изменчивость в подавляющем большинстве случаев полезна. Она позволяет организму быстро приспособиться к изменяющимся условиям и выжить в них.

c) Модификационная изменчивость характерна для всего вида, а норма реакции для каждого организма индивидуальна. Изменение количества молока в зависимости от кормежки присуща всем коровам, но для каждой коровы размеры изменения удоя будут разными: одна корова может дать от 1000 до 2500 литров молока в год, а другая от 2500 до 5000.

d) Модификационная изменчивость обратима, т.е. фенотип изменяется только под воздействием некоторых внешних факторов, а когда они прекращают свое воздействие на организм, то внешний вид возвращается к первоначальному. Человек, загоревший на пляже и вернувшийся домой, перестает подвергаться воздействию солнечных лучей в большом количестве, поэтому фермент вырабатывается в меньших количествах и кожа постепенно светлеет.

e) Модификационная изменчивость характерна в основном для количественных признаков, а не для качественных. Например, вес человека зависит от его питания, подвижности и легко изменяется при изменении этих условий, но цвет глаз не изменится от того, что человек съел или от температуры на улице. Но некоторые признаки все же изменяются под влиянием среды. У сиамских котят цвет шерсти зависит от температуры: все котята рождаются светлыми, так как в эмбриональном периоде они находятся под воздействием высокой температуры, но в дальнейшем котята, растущие в более холодных условиях становятся темнее, чем котята, воспитывающиеся в тепле.

Комбинативная изменчивость.

В каждом виде существует огромное количество особей, ни одна из которых не похожа на другую на сто процентов. За счет чего получается такое разнообразие особей и дети не являются точными копиями родителей? Причиной этого является комбинативная изменчивость. При половом размножении у потомка получается неповторимая комбинация родительских генов, которая получается в следствии следующих процессов:

Кроссинговер, обмен участками хромосом между гомологичными хромосомами, создает новые комбинации тех же самых родительских генов в случайном порядке.

Случайное расхождение гомологичных хромосом к разным полюсам в мейозе обеспечивают новые сочетания генов в гаметах.

Случайная встреча гамет при оплодотворении.

При комбинативной изменчивости каждая следующая особь в потомстве отличается от другой (исключение составляют однояйцовые близнецы), поэтому закрепление у потомков благоприятного сочетания генов в селекции для выведения лучшей породы вызывает затруднения. Для этих целей скрещивают родственные особи и выводятся чистые линии.

Мутационная изменчивость.

Самое важное свойство генов - их способность передаваться неизменными от поколению к поколению. Однако, если бы гены оставались бы неизменными на протяжении всей истории развития жизни на Земле, невозможна была бы эволюция. Изменения в генетическом материале действительно происходят. Например, в стадах анконской овцы появились коротконогие особи, и эта коротконогость передавалась в поколениях (коротконогие овцы были в моде у фермеров, так как они не могли перепрыгивать через изгороди). Такими изменениями заинтересовался Чарльз Дарвин. Он назвал их “спортами”. В 1901 году был введен новый термин для обозначения изменений Де Фризом, который изучал генетические изменения у растений и наблюдал их наследование, и назвал их “мутациями”. Мутации - это случайно возникшие стойкие изменения генотипа, затрагивающие или хромосомы, или отдельные гены. Процесс возникновения мутации называется мутагенезом, а организм, в генотипе которого произошла мутация, называется мутантом.

Мутации можно классифицировать по нескольким признакам. Во-первых, по “полезности”: мутации чаще всего носят “вредный” характер, приводят к серьезным изменениям в развитии организмов; нейтральные мутации приводят к изменениям фенотипа, не влияющих кардинально на развития организма (например, возникновение аллеля новой окраски шерсти у животных); полезные мутации имеют важную роль в эволюционном развитии, благодаря которым возникают генотипы, лучше приспособленные к условиям среды и обладающие большей жизнеспособностью. Во-вторых, по наследованию: наследственные мутации возникают в половых клетках и передаются потомству, ненаследственные мутации возникают в соматических клетках, поэтому они не наследуются, но результатом соматической мутации в некоторых случаях могут быть такие заболевания, как рак. В-третьих, мутации можно разделить на геномные, хромосомные и генные (точечные), которые будут рассмотрены ниже.

1. Геномные мутации.

Геномные мутации выражаются в увеличении числа хромосом. существует два вида геномных мутаций: анэуплоидия и полиплоидия.

Полиплоидия существует в двух формах: аутоплоидия и аллоплоидия. При аутоплоидии происходит кратное увеличении всего набора хромосом: если принять гаплоидный набор хромосом за n, то диплоидный набор, характерный для большинства организмов обозначается 2n, а полиплоиды будут иметь тройной набор хромосом (3n - триплоид), четверной набор хромосом (4n - тетраплоид) и т.д. Приставки три-, тетра-, пента- показывают, во сколько раз увеличивается набор хромосом. Причиной аутоплоидии является нарушение мейоза: не образуется веретено деления и весь набор хромосом оказывается в одной клетке. В результате ядро увеличивается в размере, а реакцией на увеличение ядра является увеличение всей клетки., а потом и всего организма. Было замечено, что аутоплоидные организмы более морозоустойчивы и жизнеспособны, поэтому большая часть растений в условиях сурового климата являются полиплоидными: в северных странах - Исландии, Финляндии, Швеции, Норвегии - половины всех растений полиплоидны, на острове Шпицберген их удельный вес составляет до 80%, а в альпийской флоре Памира 85% полиплоидов. Так же полиплоидия часто встречается у однодольных растений; например, среди рода роз встречаются виды с 7, 14, 21 и 28 хромосомами, т.е. виды отличаются кратным числом хромосом, что говорит о том, что виды произошли от одного вида путем геномных мутаций.

При кажущейся абсолютной выгоде аутоплоидных мутантов есть свои проблемы. Усложняется процесс размножения и наследования. Триплоиды, обычно, полностью бесплодны, так как при мейозе три хромосомы одной пары не могут поделиться поровну между двумя дочерними клетками. Плодовитость тетраплоидов понижена, так как при мейозе конъюгируют четыре хромосомы одной пары, что повышает возможность ошибки при расхождении, в результате которой получаются нежизнеспособные гаметы. По этой причине животные редко бывают полиплоидами, а растения достаточно часто переходят в полиплоидную форму, так как в дальнейшем полиплоиды будут размножаться вегетативным путем.

Схема наследования тоже становится более сложной. Тетраплоид, например, может иметь три типа гетерозигот, так как каждый ген у него представлен четырьмя локусами: Аааа, ААаа и АААа. В случае полного доминирования никакой разницы не существует, но в случае неполного доминирования разные гетерозоготы будут иметь разную интенсивность проявления признака. Простое менделевское наследование тоже не действует: при моногибридном скрещивании получается отношение не 3:1, а 35:1, а при дигибридном не 9:3:3:1, а 1224:35:35:1.

Так как у полиплоидов ген представлен большим числом аллелей, усиливающих развитие признака, то у них нередко проявляется явление гетерозиса (пышное развитие и повышение жизнеспособности у гетерозигот, по сравнению с гомозиготами). При этом у тетраплоидов гораздо легче сохраняется гетерозиготность, то и явление гетерозиса не будет вырождаться, как это происходит у диплоидов вследствие перехода потомков к гомозиготному состоянию.

Значение полиплоидов в сельском хозяйстве велико, так как большое количество культурных растений полиплоидны: из простой одноядерной пшеницы (2n, 14 хромосом) получили тетраплоидную твердую пшеницу (4n, 28 хромосом, применяется при изготовлении макарон) и гексаплоидную пшеницу (6n, 42 хромосомы, применяется для изготовления хлеба); тетраплоидный картофель и хлопчатник тоже приобрели широкое распространение.

Случаи полиплоидии известны для соматических клеток некоторых животных. У мухи дрозофилы в клетках слюны содержится многократно удвоенный набор хромосом (количество хромосом удваивается, но клетка к митозу не переходит), поэтому образуются огромные клетки.

Аутополиплоидия может быть получена естественным и искусственным (колхицин разрушает веретено деления, поэтому он используется в селекции для искусственного получения полиплоидии) путями. Но существует другая форма полиплоидии - аллоплоидия, которая может быть получена только искуственным путем. Она была открыта в 1924 году советским ученым Крапченко, который создал капустно-редечный гибрид. Он скрестил эти два вида, каждый из которых имеет в гаплоидном наборе девять хромосом. в гибриде получилось 18 хромосом, но гибрид оказался бесплодным, так как хромосомы разных видов не могли конъюгировать и правильно расходиться к полюсам при делении клетки. При помощи колхицина Крапченко растворил веретено деления и в гамете оказались все 18 хромосом. При оплодотворении в зиготе уже было 36 хромосом, попарно распределенных, поэтому такой гибрид был вполне плодовит и сочетал в себе признаки обоих видов. Итак, аллоплоид - гибрид с диплоидным набором


29-04-2015, 02:00


Страницы: 1 2 3 4
Разделы сайта