Нормы и интерпретация результатов теста

по коэффициенту корреляции судить нельзя. Возведенный в квадрат коэффициент корреляции называется коэффициентом детерми­нации (r 2 или r2 ). Он показывает, сколько процентов вариант обоих рядов оказались взаимозависимыми. При коэффициенте 0,50 процент таких взаимозависимых вариант составит 0,502 , т.е. 0,25 ( Heinz A ., Ebner С. GrundlagenderStatistikfiirPsychologen, PadagogenundSoziologen. Berlin, 1967. S. 112). Для коэффициента 0,98 коэффици­ент детерминации составит 0,982 = 0,9604. Следовательно, взаимо­зависимы примерно 96% вариант обоих рядов.

Корреляция как метод статистического анализа в психологиче­ских исследованиях применяется очень часто. Всем, кто работает с применением корреляционного анализа, т.е. выясняет посредством этого метода тесноту связи двух рядов, следует напомнить, что ко­эффициент, как бы высок он ни был, нельзя интерпретировать как показатель наличия причинной связи между коррелируемыми ряда­ми. Если коэффициент и может быть как-то использован в обсуж­дении вопроса о возможных причинных связях, то только в том случае, когда содержательная логика исследования и выдвигаемые при этом теоретические соображения позволяют опереться как на один из аргументов и на значение коэффициента корреляции.

В изложении метода корреляции речь шла исключительно о ли­нейных корреляциях, которые изображены на схемах №1,2, 4. Но там же приведена схема криволинейной корреляции (№ 5). Вообще говоря, вероятно, и в психике человека протекают процессы, взаи­мосвязь которых не имеет линейного вида. Вычисление нелинейных корреляций и, главное их истолкование не относятся к простейшим статистическим методам, о которых говорится в этой главе. Но об их существовании следует знать.

Наконец, полезно напомнить, что корреляции по Пирсону (с оп­ределенными ограничениями и в определенных сочетаниях) создают ту базу, на которой открываются возможности перехода к так назы­ваемому факторному анализу. (Наиболее ясное изложение сути факторного анализа см.: Теплов Б.М. Типологические особенности в н.д. человека. М., 1967. Т. 5. С. 239).

Метод определения меры различия между наблюдаемыми и предполагаемыми (теоретическими) численностями — хи-квадрат.

Ранее были рассмотрены различные отношения между выборка­ми: количественное преобладание какого-то признака, представлен­ного в одной из выборок, теснота связи между выборками. Но есть еще одно важное отношение между ними: количественная разница распределений, благодаря которой при сопоставлении выборок от­крывается возможность прийти к содержательным выводам. Это от­ношение обнаруживается при сопоставлении распределений численностей. Допустим, что сравниваются две выборки, выпускников двух школ. Часть выпускников каждой школы сдавали экзамены в вузы. Из первой школы сдавали экзамены 100 человек, из них 82 успешно, не сдали 18. Таково распределение численности в первой выборке. Из второй школы сдавали экзамены в вузы 87 человек, выдержали 44 человека, не сдали — 43. Таково распределение численностей во второй выборке. Достаточно ли этих данных, чтобы утверждать, что подготовленность к вузовским экзаменам выпуск­ников этих школ неодинакова? На первый взгляд, разница налицо:

лучше подготовлены выпускники первой школы. Однако при таком раскладе численностей возможно влияние случайности. Поэтому встает вопрос, можно ли, считаясь с представленными распределе­ниями, прийти к статистически обоснованному выводу о мере под­готовленности к экзаменам в вузы той и другой выборки.

Метод, с помощью которого подвергаются статистическому ана­лизу описанные распределения численностей, получил название хи-квадрат, его обозначают греческой буквой x 2 с показателем степе­ни. Он был разработан математиком Пирсоном. Метод x 2 весьма универсален, применим во многих исследованиях, пригоден для ста­тистического анализа распределения численностей разнообразных количественных материалов, относящихся ко всем статистическим шкалам, в том числе и к шкале наименований.

Техника вычисления хи-квадрата довольно проста. Рассмотрим пример со сдачей экзаменов в вузы выпускниками первой и второй школ. В условии сказано, что всего намерены были сдавать экзаме­ны 187 человек: 100 учащихся (53,5%) из первой школы и 87 (46,5%) из второй. Предположим, что выпускники обеих школ под­готовлены одинаково, тогда и доли сдавших и не сдавших будут та­кие же, как доли их представленности в общем числе сдающих. Всего сдало экзамены 126 выпускников (82 + 44). Согласно выска­занному предположению, 53,5% от этого числа должны бы были прийтись на 1-ю школу — это составит 66,9 от 126 — и 46,5% на 2-ю школу, что составит 58,9 от 126. Такое же рассуждение повторяем и относительно несдавших. Их всего 61 человек (18 + 43). На 1-ю школу, как нам известно, должно, по предположению, прийтись 53,5% от этого числа, т.е. 33,0 от 61, а на долю 2-й школы — 46,5%, т.е. 28,1 от 61. Нуль-гипотеза, имеющая в данном раскладе тот смысл, что между выпускниками нет различия, при таком соот­ношении сдавших и несдавших подтвердилась бы. Однако в услови­ях этого исследования показано другое распределение. Количество выпускников 1-й школы, сдавших экзамены, составляет 82, а не 66,9, как можно было бы предположить, исходя из нуль-гипотезы. Соот­ветственно количество выпускников 2-й школы, сдавших экзамены, составляет в действительности всего 44, а не 58,9. Точно также, сравнивая количество несдавших (по условию с предполагаемым распределением) найдем по 1-й школе 18, а не 33, а по 2-й школе — 43, а не 28,1.

Расхождения между действительными распределениями и рас­пределениями, которые могли бы иметь место, если исходить из нуль-гипотез, налицо. Они-то и учитываются при вычислении x 2 . Все сказанное удобно представить в виде таблицы-графика распре­деления численностей (табл. 7). Количества, которые были бы по­лучены при принятии нуль-гипотезы, заключены в скобки. В правом углу буквенное обозначение клетки.

Таблица 7

Школа Число сдавших Число несдавших Всего Долевые отноше­ния, %
Первая

82 А

(66,9)

18 В

(33,0)

100

(100)

53,5
Вторая

44 С

(58,9)

43 Д

(28,1)

87

(87)

46,5
Всего 126 61 187 100

Получены разности по клеткам (знак разности несущественен). Клетки:

А fA = 82—66,9= 15,1;

В fB = 18 — 33 = 15,0;

С fC = 44 — 58,9 = 14,9;

Д fD = 43—28,1= 14,9. Формула хи-квадрат:

где f 0 — наблюдаемые численности; f e предполагаемые (теоре­тические) численности.

В рассмотренном материале x 2 = 15,12 /66,9 + 152 /33 + 14,92 /58,9 + 14,92 /28,1= 288/66,9 + 225/33 + 222/58,9 + 222/28,1= 3,4 + 6,8 + 3,8 + 7,9 = 21,9

Для получения числа степеней свободы нужно воспользоваться формулой (только для хи-квадрат): fd = ( k - 1)(с - 1) = (2 - 1) х (2 - 1) = 1 степень свободы, где k — число столбцов, с — число строк в таблице с анализируемым материалом.

Обратимся к таблице уровней значимости для одной степени свободы для хи-квадрат: x 2 0,99 = 6,6. Следовательно, полученная величина вполне достаточна для отклонения h 0 . Есть все основания для содержательного вывода о различной степени подготовленности выпускников обеих школ к экзаменам в вузы.

Все вычисления, приводимые в этой главе, ведутся с точно­стью до первого знака, т.е. вычисляются целые и десятые. Этим объясняется та, в общем-то, несущественная разница при вычис­лениях одной и той же величины разными способами. Никакого практического значения встречающиеся расхождения в величи­нах не имеют.

Полезно знать, что коэффициент хи-квадрат и коэффициент че­тырехпольной корреляции взаимосвязаны и, поскольку известна численность и распределение сопоставляемых выборок, указанные коэффициенты могут быть определены один через другой.

Как показывает само название этого метода, числовой материал, подлежащий статистическому анализу, может быть распределен в таблице-графике, имеющей четыре поля. Такое расположение мате­риала облегчает все последующие действия с ним. Чтобы рассмот­реть технику вычисления коэффициента четырехпольной корреля­ции — он обозначается символом j (фи), — можно воспользовать­ся тем примером, где речь шла о вычислении коэффициента x 2 . Вы­пускники двух школ сравнивались между собой по подготовленно­сти к вузовским экзаменам.

Школы Сдали Не сдали Всего
Первая 82 a 18 b 100 a + b
Вторая 44 c 43 d 87 c + d
Итого: 126 а + с 61 b + d 187

Заменив буквенные обозначения числами, получим:

Для получения коэффициента х 2 нужно воспользоваться форму­лой х 2 = j2 · n. В данном примере х 2 = 0,342 ·187 = 0,1156 · 187 = = 21,7. Этот же коэффициент х 2 вычислялся другим приемом. По­лучено значение 21,9. Расхождение вызвано разницей в технике вычислений.

Коэффициент четырехпольной корреляции j может принимать значения от 0 до 1, причем знак получаемого j не принимается во внимание.

Психологу, намеренному воспользоваться для статистического анализа своих материалов методом хи-квадрат, нужно знать о неко­торых обязательных требованиях этого метода; о них не упомина­лось в приведенных примерах. При вычислении коэффициента х 2 необходимо брать для анализа только абсолютные численности вы­борок, но не относительные, в частности, не проценты. Необходи­мость учитывать это свойство объясняется тем, что значение коэф­фициента х 2 зависит от абсолютных величин рассматриваемых рас­пределений. Так, сравнение выборок с численностями 60 и 40 даст совершенно не тот результат, что сравнение выборок с численно­стями 6 и 4, хотя процентное отношение распределений в обоих случаях одинаково (60 и 40%).

Далее, для вычисления коэффициента х 2 нужно, чтобы в каждой клетке таблицы-графика было не менее пяти наблюдений. Наконец, нужно со вниманием относиться к определению числа степеней свободы; неверное определение этого числа повлечет за собой не­верное определение уровня значимости коэффициента по таблице.

Этим заканчивается рассмотрение статистических методов, отно­сящихся ко второму типу задач.

В этих задачах независимо от того, будут ли они практического или теоретического содержания, психолог сопоставляет, сравнивает между собой несколько выборок. При этом не следует забывать, что цель исследования не всегда состоит в том, чтобы при сопоставле­нии отвергнуть нуль-гипотезу. Иногда конечная или промежуточная цель исследования состоит в том, чтобы, допустим, сравнивая вы­борки, подтвердить нуль-гипотезу. Самый простой пример: исследо­ватель желает составить большую выборку, для чего необходимо объединить в ней учащихся нескольких школ. Естественно, решаю­щее значение имеет доказательство того, что группы учащихся из разных школ относятся к одной совокупности, нужно, чтобы при­мененные критерии подтвердили это, а значит, статистика должна подтвердить при сравнении групп нуль-гипотезу. Подтвердить или отвергнуть нуль-гипотезу при сопоставлении выборок — в этом и состоит назначение статистических критериев; наиболее простые из них были изложены в предшествующем тексте. Конечно, информа­ция, которую выявят статистические методы, может быть противоречи­ва утверждениям, которые намерен защищать исследователь. В таком случае ему придется внести поправки в свои утверждения или отка­заться от них.

Переходим к задачам третьего типа — задачам, рассмат­ривающим динамические, временные ряды.

Предположим, что психологу дано задание собрать информацию о состоянии умственной работоспособности школьников 8-х классов, начиная со второй недели учебного года и до девятой недели вклю­чительно. Одной из методик, с помощью которых можно фиксиро­вать состояние умственной работоспособности, считается тест Кре­пелина. Он состоит из большого количества примеров, в каждом из них нужно складывать два двузначных числа; учитывается общее число правильно решенных примеров. Каждые 3 минуты испытуе­мые по сигналу экспериментатора отмечают черточкой сделанное. Общая длительность эксперимента в зависимости от возраста со­ставит 9, 12 или 15 минут. Этой методикой и воспользовался пси­холог. Он начал с того, что сформировал из учащихся, средние ус­пехи которых оценивались за предыдущее полугодие баллами 4 и 5, выборку из 10 человек. Все они изъявили желание участвовать в эксперименте. С этими учащимися психолог в течение первой недели учебного года провел по 12 тренировочных занятий; это было необходимо, иначе рост продуктивности вследствие упражняемости замаскировал бы изменения в динамике работоспо­собности. Затем начался эксперимент: по субботам после уроков учащиеся этой выборки в течение 12 минут работали с тестом Крепелина. Эксперимент, как было сказано, продолжался 8 не­дель. Были получены следующие данные, средние по всей выбор­ке (рис. 4).

Визуальная оценка полученного динамического ряда свидетельст­вует о снижении умственной работоспособности, в чем, конечно, нет ничего удивительного. Однако снижение идет не вполне равно­мерно. Это ясно видно из графика.

Недели экспери­мента I II III IV V VI VII VIII
Средняя продук­тивность по тесту Крепелина 92 94 90 92 81 74 78 70

Основная тенденция измене­ния умственной работоспособ­ности вполне ясна. Наблюдае­мые, в общем, незначительные отклонения от этой тенденции могут быть на графике устра­нены методом сглаживания. В этом случае применим метод скользящей средней. Для сгла­живания суммируются три по­казателя у — в данном приме­ре это показатели продуктив­ности по тесту, — далее, опус­кая по одному показателю, суммируются одна за другой триады. Средняя каждой триа­ды принимается за показатель сглаженной ломанной, если ори­ентироваться по графику. Смысл проводимого действия состоит в том, что основная тенденция выступает более отчетливо.

92 92 88 82 77 74 — средние по триадам
92 94 90 92 81 74 78 70

В только что рассмотренном примере сглаживание имеет такой вид:

Результаты сглаживания приобретают большую наглядность при нанесении их на график. Выступает основная тенденция динамики умственной работоспособности. Судя по показателям, полученным после сглаживания, в течение первых трех экспериментальных не­дель значительного снижения работоспособности не наблюдается, а далее идет непрерывное и резкое ее снижение. Сглаживание, как видно на графике, устранило колебания в работоспособности, отме­ченные на первичном графике после V недели. При сглаживании по триадам общее число точек уменьшается на 2.

Какое значение имеет выделение посредством сглаживания ос­новной тенденции? Если условия, благодаря которым возникла ос­новная тенденция, сохранятся, то и эта тенденция с высокой веро­ятностью сохранится и, таким образом, по основной тенденции мо­жет быть построен прогноз, как будут развиваться изучаемые явле­ния. Но такой прогноз возможен только при стабильности опреде­ленных условий. Для его построения нужен не только формальный, но и содержательный анализ; он же позволяет раскрыть значение факторов, вызвавших отклонения в ту или другую сторону от ос­новной тенденции.

е Техника метода скользящей средней дает возможность выбирать различные способы объединения показателей для сглаживания. Та­ковыми могут быть не только триады, но при достаточно большом числе показателей (порядка 30—40 и более) для выведения сколь­зящей средней могут быть выбраны пентады (объединения пяти по­казателей) и даже септиды (семь показателей).

Нужно иметь в виду, что наглядный и простой метод скользящей средней малопригоден для сглаживания динамики процессов, развитие которых во времени не имеет линейной формы (см.: рис. 3, схема 5, с. 265). Сглаживание методом скользящей средней в таких случаях мо­жет привести к искажению действительной тенденции развивающегося процесса. Исследователю следует внимательно всмотреться в материал, подлежащий сглаживанию, чтобы решить, имеет ли он право восполь­зоваться этим методом. Если криволинейная зависимость отражена в достаточно больших отрезках кривой, то каждый из этих отрезков в отдельности может быть подвергнут сглаживанию. Таково ограничение в использовании метода скользящей средней.

Анализируя выраженную на графике основную тенденцию в ее приближении к прямой, можно заметить, что метод не дает меры наклона, угла, который образуется между полученной после сгла­живания приближающейся к прямой ломаной и осью абсцисс. Ме­жду тем, узнав величину этого угла, исследователь получит инфор­мацию о том, с какой скоростью изменяются изучаемые явления во времени: чем круче наклон и соответственно чем меньше внешний угол сглаженной кривой с осью абсцисс, тем больший путь проходит за единицу времени изменяющийся процесс. Это хорошо видно на рис. 5.

Относительно медленное движение
Относительно быстрое движение

Единица времени
Рис.5

Точные сведения о мере наклона отрезка прямой, полученного после сглаживания, да­ет метод наименьших квадратов.

Для получения пара­метров отрезка прямой нужно обратиться к от­ношению единиц време­ни (х) и показателей раз­вивающего процесса (у).

Для нахождения па­раметров отрезка прямой, который после сглаживания представит основную тенденцию изменяющегося ряда, проделываются вычисле­ния по определенным формулам.

Формула прямой: у = а + bх, где у означает показатели ряда, х — единицы времени, по которым прослеживаются изменения изучае­мого ряда. Надлежит узнать величины а и b. Величина а необходи­ма для установления точки, с которой берет свое начало отрезок прямой, b — необходимо для установления степени наклона отрезка прямой по отношению к оси абсцисс (оси иксов).

Для вычисления вышеуказанных параметров а и b имеется сис­тема двух уравнений с двумя неизвестными:

па + åxb = åу ;

åxa + åx 2 b = åху;

х и у в этой формуле рассчитываются из фактических данных изу­чаемого ряда.

Порядок вычислений. Шестиклассники Саня и Толя в течение пяти дней упражнялись в бросках мяча в корзину. Показатели Сани приведены в таблице (х — единица времени, у число попаданий мячом в корзину. В таблице приведены вычисления и других, тре­буемых формулой, величин; п = 5).

х у х 2 ху
1 3 1 3
2 4 4 8
3 6 9 18
4 5 16 20
5 8 25 40

åx = 15; åу = 26; åx 2 = 55;åху = 89 5a + 15b = 26;

15a + 55b = 89.

Нахождение неизвестных а и b производится обычным способом исключения одного неизвестного. Члены первого уравнения для этого умножаются на 3

15a + 45b = 78.

Из второго уравнения вычитается первое, вычисляем b:

10b = 11; b = 1,1.

Подставив числовое значение b в первое уравнение, можно полу­чить числовое значение а:

5a + 16,5 = 26;

5a = 9,5; a = 1,9.

Поскольку известны оба параметра отрезка прямой, можно опре­делить все значения параметров по пяти точкам, по формуле у = 1,9 + 1,1х.

y 1 = 1,9 + 1,1 =3,0;

y 2 = 1,9+2,2=4,1;

y 3 = 1,9+3,3=5,2;

y 4 = 1.9 + 4,4 = 6,3;

y 5 =1,9 + 5,5=7,4.

Как было сказано ранее, сверстник Сани Толя упражнялся в том же умении. Так же, как и у Сани, количество дней упражнения бы­ло равно 5. Ниже приводятся результаты Толи и показаны все дру­гие величины, которые необходимы для вычисления величин, тре­буемых формулой.

х у х 2 ху
1 3 1 3
2 6 4 12
3 5 9 15
4 8 16 32
5 10 25 50

åx = 15; åy = 32; åx 2 = 55; åxy =112.

Обозначения здесь такие же, что и в предыдущем примере.


9-09-2015, 17:43


Страницы: 1 2 3 4 5 6
Разделы сайта