Резина

резин является сопротивление старе­нию (сохранение механических свойств) после воздействия света, озона, тепла и других факторов.

Механические свойства резин определяют в статических усло­виях, т. е. при постоянных нагрузках и деформациях, при относи­тельно небольших скоростях нагружения (например, при испыта­нии на разрыв), а также в динамических условиях, например, при многократных деформациях растяжения, сжатия, изгиба или сдви­га. При этом особенно часто резины испытывают на усталостную выносливость и теплообразование при сжатии.

Усталостная выносливость характеризуется числом циклов де­формаций, которое выдерживает резина до разрушения. Для со­кращения продолжительности определения усталостной выносли­вости испытания проводят иногда в условиях концентрации напря­жений, создаваемых путем дозированного прокола или примене­ния образцов с канавкой.

Теплообразование при многократных деформациях сжатия оп­ределяется по изменению температуры образца резины в процессе испытания в заданном режиме (при заданном сжатии и заданной частоте деформаций).

Пластические и эластические свойства

Пластичностью называется способность материала легко де­формироваться и сохранять форму после снятия деформирующей нагрузки. Иными словами, пластичность — это способность мате­риала к необратимым деформациям.

Эластичностью называется способность материала легко дефор­мироваться и восстанавливать свою первоначальную форму и раз­меры после снятия деформирующей нагрузки, т. е. способность к значительным обратимым деформациям.

Эластическими деформациями, в отличие от упругих, называют­ся такие обратимые деформации, которые характеризуются значительной величиной при относительно малых деформирующих усилиях (низкое значение модуля упругости).

Пластические и эластические свойства каучука проявляются одновременно; в зависимости от предшествующей обработки кау­чука каждое из них проявляется в большей или меньшей степени. Пластичность невулканизованного каучука постепенно снижается при вулканизации, а эластичность возрастает. В зависимости от степени вулканизации соотношение этих свойств каучука посте­пенно изменяется. Для невулканизованных каучуков более харак­терным свойством является пластичность, а вулканизованные каучуки отличаются высокой эластичностью. Но при деформациях невулканизованного каучука наблюдается также частичное восста­новление первоначальных размеров и формы, т. е. наблюдается некоторая эластичность, а при деформациях резины можно наблю­дать некоторые неисчезающие остаточные деформации.

Согласно теории, разработанной советскими учеными А. П. Александровым и Ю. С. Лазуркиным, общая деформация каучука и резины состоит из трех составляющих: 1) упругой де­формации, подчиняющейся закону Гука, jу; 2) высокоэластической деформации jв и 3) пластической деформации jп:

j = jу + jв + jп

Соотношение составляющих общей деформации зависит от при­роды каучука, его структуры, степени вулканизации, состава ре­зины, а также от скорости деформаций, значений создаваемых на­пряжений и деформаций, длительности нагружения и от темпера­туры.

Упругая деформация практически устанавливается мгновенно при приложении деформирующего усилия и также мгновенно исче­зает после снятия нагрузки; обычно она составляет доли процента от общей деформации. Этот вид деформации обусловлен неболь­шим смещением атомов, изменением межатомных и межмолеку­лярных расстояний и небольшим изменением валентных углов.

Высокоэластическая деформация резин увеличивается во вре­мени по мере действия деформирующей силы и достигает посте­пенно некоторого предельного (условно-равновесного) значения. Она так же, как и упругая деформация, обратима; при снятии на­грузки высокоэластическая деформация постепенно уменьшается, что приводит к эластическому восстановлению деформированного образца. Высокоэластическая деформация, в отличие от упругой, характеризуется меньшей скоростью, так как связана с конформационными изменениями макромолекул каучука под действием внеш­ней силы. При этом происходит частичное распрямление и ориен­тация макромолекул в направлении растяжения. Эти изменения не сопровождаются существенными нарушениями межатомных и меж­молекулярных расстояний и происходят легко при небольших усилиях. После прекращения действия деформирующей силы вследствие теплового движения происходит дезориентация молекул и восстановление размеров образца. Специфическая особенность

механических свойств каучуков и резин связана с высокоэластической деформацией.

Пластическая деформация непрерывно возрастает при нагружении и полностью сохраняется при снятии нагрузки. Она характер­на для невулканизованного каучука и резиновых смесей и связана с необратимым перемещением макромолекул друг относительно друга.

Скольжение молекул у вулканизованного каучука сильно за­труднено наличием прочных связей между молекулами, и поэтому вулканизаты, не содержащие наполнители, почти полностью восстанавливаются после прекращения действия внешней силы. На­блюдаемые при испытании наполненных резин неисчезающие де­формации являются следствием нарушения межмолекулярных связей, а также следствием нарушения связей между каучуком и компонентами, введенными в нею, например вследствие отрыва частиц ингредиентов от каучука. Неисчезающие остаточные деформации часто являются кажущимися вследствие малой скорости эластического восстановления, т. е. оказываются практически исчезающими в течение некоторого достаточно продолжительного времени.

Твердость резины

Твердость резины характеризуется сопротивлением вдавлива­нию в резину металлической иглы или шарика (индентора) под действием усилия сжатой пружины или под действием груза.

Для определения твердости резины применяются различные твердомеры. Часто для определения твердости резины использует­ся твердомер ТМ-2 (типа Шора), который имеет притупленную иглу, связанную с пружиной, находящейся внутри прибора. Твер­дость определяется глубиной вдавливания иглы в образец под дей­ствием сжатой пружины при соприкосновении плоскости основа­ния прибора с поверхностью образца (ГОСТ 263—75). Вдавлива­ние иглы вызывает пропорциональное перемещение стрелки по шкале прибора. Максимальная твердость, соответствующая твер­дости стекла или металла, равна 100 условным единицам. Резина в зависимости от состава и степени вулканизации имеет твердость в пределах от 40 до 90 условных единиц. С увеличением содержа­ния наполнителей и увеличением продолжительности вулканиза­ции твердость повышается; мягчители (масла) снижают твердость резины.

Теплостойкость

О стабильности механических свойств резины при повышенных температурах судят по показателю ее теплостойкости. Испытания на теплостойкость производят при повышенной температуре (70 °С и выше) после прогрева образцов при температуре испытания в те­чение не более 15 мин (во избежание необратимых изменений)

с последующим сопоставлением полученных результатов с резуль­татами испытаний при нормальных условиях (23±2°С).

Количественной характеристикой теплостойкости эластомеров служит коэффициент теплостойкости, равный отношению значений прочности при растяжении, относительного удлинения при разрыве и других показателей, определенных при повышенной температуре, к соответствующим показателям, определенным при нормальных условиях. Чем ниже показатели при повышенной температуре по сравнению с показателями при нормальных условиях, тем ниже коэффициент теплостойкости.

Полярные каучуки обладают пониженной теплостойкостью. На­полнители значительно повышают теплостойкость резин.

Износостойкость

Основным показателем износостойкости является истираемость и сопротивление истиранию, которые определяются в условиях ка­чения с проскальзыванием (ГОСТ 12251—77) или в условиях скольжения по истирающей поверхности, обычно, как и в преды­дущем случае, по шлифовальной шкурке (ГОСТ 426—77).

Истираемость a определяется как отношение уменьшения объема образца при истирании к работе, затраченной на истирание, и выражается в м3 /МДж [см3 /(кВт.ч)]. Сопротивление истиранию b определяется как отношение затраченной работы на истирание к уменьшению объема образца при истирании и выражается в МДж/м3 [см3 /(кВт.ч)].

Истирание кольцевых образцов при качении с проскальзыва­нием более соответствует условиям износа протекторов шин при эксплуатации и поэтому применяется при испытаниям на износо­стойкость протекторных резин.

Теплообразование при многократном сжатии

Теплообразование резины при многократном сжатии цилиндри­ческих образцов характеризуется температурой, развивающейся в образце вследствие внутреннего трения (или повышением температуры при испытании).

Морозостойкость резины

Морозостойкость—способность резины сохранять высокоэластические свойства при пониженных температурах. Свойства резин при пониженных температурах характеризуются коэффициентом морозостойкости при растяжении, температурой хрупкости и тем­пературой механического стеклования.

Коэффициент морозостойкости при растяжении (ГОСТ 408—66) представляет собой отношение удлинения образца при пониженной температуре к удлинению его (равному 100%) при температуре 23±2°С под действием той же нагрузки. Резина считается моро­зостойкой при данной температуре, если коэффициент морозостой­кости выше 0,1.

Температура хрупкости Тхр—максимальная минусовая темпе­ратура, при которой консольно закрепленный образец резины разрушается или дает трещину при изгибе под действием ударе! ГОСТ 7912—74). Температура хрупкости резин зависит от поляр­ности и гибкости макромолекул, с повышением гибкости молеку­лярных цепей она понижается.

Температурой механического стеклования называется темпера­тура, при которой каучук или резина теряют способность к высоко­эластическим деформациям. По ГОСТ 12254—66 этот показатель определяется на образцах, замороженных при температуре ниже температуры стеклования. Образец резины цилиндрической фор­мы нагружают (после предварительного замораживания) и затем медленно размораживают со скоростью 1 °С в минуту и находят температуру, при которой деформация образца начинает резко возрастать.

Сопротивление старению и действию агрессивных сред

Старением называется необратимое изменение свойств каучука или резины под действием тепла, света, кислорода, воздуха, озона или агрессивных сред, т. е. преимущественно немеханических фак­торов. Старение активируется, если резина одновременно подвер­гается воздействию механических нагрузок.

Испытания на старение производят, выдерживая резину в раз­личных условиях (на открытом воздухе, в кислороде или воздух при повышенной температуре; в среде озона или при воздействии света и озона).

При атмосферном старении на открытом воздухе или термиче­ском старении в среде горячего воздуха (ГОСТ 9.024—74) резуль­тат испытания оценивают коэффициентом старения, который пред­ставляет отношение изменения показателей каких-либо свойств, чаще всего предела прочности и относительного удлинения при раз­рыве к соответствующим показателям до старения. Чем меньше

изменения свойств при старении и коэффициент старения, тем выше сопротивление резины старению.

Сопротивление действию различных сред (масел, щелочей, кислот и др.) оценивается по изменению свойств — предела прочно­сти при растяжении и относительного удлинения при разрыве в 1этих средах. Оно характеризуется коэффициентом, представляющим отношение показателя после воздействия агрессивной среды к соответствующему показателю до ее воздействия.

ДОЛГОВЕЧНОСТЬ И УСТАЛОСТНАЯ ВЫНОСЛИВОСТЬ РЕЗИН

Долговечность резин в условиях статической деформации

Прочность любого твердого тела понижается с увеличением продолжи­тельности действия напряжения и поэтому разрушающая нагрузка не является константой твердого тела. Разрушающая нагрузка - условная мера прочности только при строго определенных скорости деформации и температуре. Сниже­ние прочности материала, находящегося в статически напряженном состоянии, называется статической усталостью. Продолжительность пребывания тела в напряженном состоянии от момента нагружения до разрушения называется долговечностью материала под нагрузкой.

При температурах ниже ТХР полимеры ведут себя подобно хрупким твер­дым телам и температурно-временная зависимость прочности выражается уравнением Журкова:

t = t o exp (( uo - g s ) / kT)

где t o - константа, имеющая размерность времени и значение, близкое к перио­ду собственных колебаний атомов, 10-13 – 10-12 с;

k - константа Больцмана;

uo - энергия активации процесса разрушения в исходном, ненагруженном состоя­нии, равная энергии активации процесса в расчете на 1 химическую связь;

g - структурно-чувствительный коэффициент.

При температуре вышеTc полимеры переходят в высокоэластическое со­стояние, при котором температурно-временная зависимость прочности описы­вается для сшитых полимеров уравнением:

t = C . b -6 exp ( u / kT)

где C и b - константы, зависящие от типа каучука, структуры вулканизата;

u - энергия активации разрушения резин в расчете на 1 связь.

Изменения материала, происходящие под действием напряжения во вре­мени, являются необратимыми. Резиновые изделия находятся под воздействи­ем среды. Особенно опасно воздействие озона. Растрескивание, которое на­блюдается у напряженных резин, находящихся под воздействием озона, назы­вается озонным растрескиванием. Действие агрессивных сред на резину в на­пряженном состоянии называют коррозионным растрескыванием.

Долговечность резины в условиях динамических деформаций

Снижение прочности материала вследствие многократных деформаций называется динамической усталостью или утомлением. Сопротивление резин утомлению или динамическая выносливость выражается числом циклов де­формации, необходимым для разрушения образца. Максимальное напряжение в цикле деформации, соответствующее разрушению образца в условиях много­кратных деформаций, называется усталостной прочностью, а время, необхо­димое для разрушения резины в условиях многократных деформаций, - дина­мической долговечностью. Наиболее распространенным режимом испытаний на многократное растяжение является режим постоянных максимальных удли­нений, который осуществляется на маши­не МРС-2. Это испытание прово­дится при постоянной амплитуде и задан­ной частоте (250 и 500 цикл/мин), а также при постоянном максимальном и среднем значениях деформации.

Влияние структуры и состава ре­зин на ее долговечность. Как правило, ре­зина имеет высокую усталостную вынос­ливость, если она обладает высокой проч­ностью, малым внутренним трением и вы­сокой химической стойкостью. Влияние структуры или состава резины на эти свойства различно. Влияние типа каучука, характера вулканизационной сетки напол­нителей, пластификаторов, антиоксидантов также неоднозначно.

Методы испытания долговечности выбираются с учетом реальных условий эксплуатации резины, видов и условий деформаций, имеющих решающее значе­ние.

6. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Ю. М. Лахтин “Материаловедение”, 1990, Москва,

“Машиностроение”

2. Н. В. Белозеров “Технология резины”, 1979, Москва, “Химия”

3. Ф. А. Гарифуллин, Ф. Ф. Ибляминов “Конструкционные резины

и методы определения их механических свойств”, Казань, 2000




29-04-2015, 04:14

Страницы: 1 2
Разделы сайта