Изложенные методы нормирования являются точными только в том случае, когда сами границы инвариантны к повороту и изменению масштаба. Этот случай редко встречается на практике. Например, один и тот же объект, разбитый на элементы в двух различных направлениях, как правило, имеет разную форму границы, причем степень различия пропорциональна разрешающей способности изображения. Этот эффект можно уменьшить, если выбирать длины элементов цепи большими, чем расстояния между пикселами дискретного образа, или же выбирать ориентацию решетки вдоль главных осей кодируемого объекта.
3.1.2.Сигнатуры.
Сигнатурой называется одномерное функциональное представление границы. Известно несколько способов создания сигнатур. Одним из наиболее простых является построение отрезка из центра к границе как функции угла. Очевидно, что такие сигнатуры зависят от периметра области и начальной точки. Нормирование периметра можно осуществить, пронормировав кривую r(q) максимальным значением. Проблему выбора начальной точки можно решить, определив сначала цепной код границы, а затем применив метод, изложенный в предыдущем разделе. Конечно, расстояние, зависящее от угла, не является единственным способом определения сигнатуры. Например, можно провести через границу прямую линию и определить угол между касательной к границе и этой линией как функциюположения вдоль границы. Полученная сигнатура, хотя и отличается от кривой r(q), несет информацию об основных характеристиках формы границы. Например, горизонтальные участки кривой соответствовали бы прямым линиям вдоль границы, поскольку угол касательной здесь постоянен. Один из вариантов этого метода в качестве сигнатуры использует так называемую функцию плотности наклона. Эта функция представляет собой гистограмму значений угла касательной. Поскольку гистограмма является мерой концентрации величин, функция плотности наклона строго соответствует участкам границы с постоянными углами касательной (прямые или почти прямые участки и имеет глубокие провалы для участков, соответствующих быстрому изменению углов (выступы или другие виды изгибов).
3.1.3.Аппроксимация многоугольниками.
Дискретную границу с произвольной точностью можно аппроксимировать многоугольниками. Для замкнутой кривой аппроксимация является точной, когда число сегментов в многоугольнике равно числу точек границы, так что каждая пара соседних точек определяет сегмент многоугольника. На практике целью аппроксимации многоугольниками является качественное определение формы границы с помощью минимального числа многоугольных сегментов. Хотя обычно эта проблема нетривиальна и довольно быстро сводится к итеративному поиску, требующему больших временных затрат, имеется ряд методов аппроксимации многоугольниками, относительная простота которых и требования к обработке данных делают их пригодными для приложений в области технического зрения роботов.
В задаче аппроксимации многоугольниками применяются м етоды объединения, основанные на ошибке или других критериях. Один из подходов состоит в соединении точек границы линией по методу наименьших квадратов. Линия проводится до тех пор, пока ошибка ап проксимации не превысит ранее заданный порог. Когда порог превышается, параметры линии заносятся в память, ошибка полагается равной нулю и процедура повторяется; новые точки границы соединяются до тех пор, пока ошибка снова не превысит порог. В конце процедуры образуются вершины многоугольника в результате пересечения соседних линий. Одна из основных трудностей, связанная с этим подходом, состоит в том, что эти вершины обычно не соответствуют изгибам границы (таким, как углы), поскольку новая линия начинается только тогда, когда ошибка превысит порог. Если, например, длинная прямая линия пересекает угол, то числом (зависящим от порога) точек, построенных после пересечения, можно пренебречь ранее, чем будет превышено значение порогового уровня. Однако для устранения этой трудности наряду с методами объединения можно использовать методы разбиения.
Один из методов разбиения сегментов границы состоит в последовательном делении сегмента на две части до тех пор, пока удовлетворяется заданный критерий. Например, можно потребовать, чтобы максимальная длина перпендикуляра, проведенного от сегмента границы к линии, соединяющей две крайние точки этого сегмента, не превышала ранее установленного значения порогового уровня. Если это имеет место, наиболее дальняя точка становится вершиной, разделяя, таким образом, исходный сегмент на два подсегмента. Этот метод обладает тем преимуществом, что он адаптирован к наиболее подходящим точкам изгиба. Для замкнутой границы наилучшей начальной парой точек обычно являются точки, наиболее удаленные от границы.
3.2.Дескрипторы области
Область, представляющую интерес, можно описать формой ее границы или же путем задания ее характеристик. Важно отметить, что методы, рассмотренные выше, применяются для описания областей.
3.2.1.Некоторые простые дескрипторы.
Существующие системы технического зрения основываются на довольно простых дескрипторах области, что делает их более привлекательными с вычислительной точки зрения. Как следует ожидать, применение этих дескрипторов ограничено ситуациями, в которых представляющие интерес объекты различаются настолько, что для их идентификации достаточно несколько основных дескрипторов.
Площадь области определяется как число пикселов, содержащихся в пределах ее границы. Этот дескриптор полезен при сборе информации о взаимном расположении и форме объектов, от которых камера располагается приблизительно на одном и том же расстоянии. Типичным примером может служить распознавание системой технического зрения объектов, движущихся по конвейеру.
Большая и малая оси области полезны для определения ориентации объекта. Отношение длин этих осей, называемое эксцентриситетом области, также является важным дескриптором для описания формы области.
Периметром области называется длина ее границы. Хотя иногда периметр применяется как дескриптор, чаще он используется для определения меры компактности области, равной квадрату периметра, деленному на площадь. Отметим, что компактность является безразмерной величиной (и поэтому инвариантна к изменению масштаба) и минимальной для поверхности, имеющей форму диска.
Связной называется область, в которой любая пара точек может быть соединена кривой, полностью лежащей в этой области. Для множества связных областей (некоторые из них имеют отверстия) в качестве дескриптора полезно использовать число Эйлера, которое определяется как разность между числом связных областей и числом отверстий. Например, числа Эйлера для букв А и В соответственно равны 0 и —1. Другие дескрипторы области рассматриваются ниже.
3.2.2.Текстура.
Во многих случаях идентификацию объектов или областей образа можно осуществить, используя дескрипторы текстуры. Хотя не существует формального определения текстуры, интуитивно этот дескриптор можно рассматривать как описание свойств поверхности (однородность, шероховатость, регулярность). Двумя основными подходами для описания текстуры являются статистический и структурный. Статистические методы дают такие характеристики текстуры, как однородность, шероховатость, зернистость и т. д. Структурные методы устанавливают взаимное расп оложение элементарных частей образа, как, например, описание текстуры, основанной на регулярном расположении параллельных линий.
3.2.3.Скелет области.
Важным подходом для описания вида структуры плоской области является ее представление в виде графа. Во многих случаях для этого определяется схема (скелет) области с помощью так называемых прореживающих (или же сокращающих) алгоритмов. Прореживающие процедуры играют основную роль в широком диапазоне задач компьютерного зрения — от автоматической проверки печатных плат до подсчета асбестовых волокон в воздушных фильтрах. Скелет области можно определить через преобразование средних осей (ПСО), предложенное в работе. ПСО областиR с границей В определяется следующим образом. Для каждой точки р из R мы определяем ближайшую к ней точку, лежащую на В. Если р имеет больше одной такой точки, тогда о ней говорится, что она располагается на средней оси (скелете) области R. Важно отметить, что понятие «ближайшая точка» зависит от определения расстояния, и поэтому на результаты операции ПСО будет влиять выбор метрики. Хотя ПСО дает довольно удовлетворительный скелет области, его прямое применение затруднительно с вычислительной точки зрения, поскольку требуется определение расстояния между каждой точкой области и границы. Был предложен ряд алгоритмов построения средних осей, обладающих большей вычислительной эффективностью. Обычно это алгоритмы прореживания, которые итеративно устраняют из рассмотрения точки контура области так, чтобы выполнялись следующие ограничения:
1) не устранять крайние точки;
2) не приводить к нарушению связности;
3) не вызывать чрезмерного размывания области.
4.СЕГМЕНТАЦИЯ И ОПИСАНИЕ ТРЕХМЕРНЫХ СТРУКТУР
В предыдущих двух разделах основное внимание уделялось методам сегментации и описания двумерных структур. В этом разделе мы рассмотрим эти задачи применительно к трехмерным данным сцены.
По существу зрение является трехмерной проблемой, поэтому в основе разработки многофункциональных систем технического зрения, пригодных для работы в различных средах, лежит процесс обработки информации о трехмерных сценах. Хотя исследования в этой области имеют более чем 10-летнюю историю, такие факторы, как стоимость, скорость и сложность, тормозят внедрение обработки трехмерной зрительной информации в промышленных приложениях.
Возможны три основные формы представления информации о трехмерной сцене. Если применяются датчики, измеряющие расстояние, то мы получаем координаты (х, у, z) точек поверхностей объектов. Применение устройств, создающих стереоизображение, дает трехмерные координаты, а также информацию об освещенности в каждой точке. В этом случае каждая точка представляется функциейf (х, у, z), где значения последней в точке с координатами (х, у, z) дают значения интенсивности в этой точке (для обозначения точки в трехмерном пространстве и ее интенсивности часто применяется термин вок сел). Наконец, можно установить трехмерные связи на основе одного двумерного образа сцены, т. е. можно выводить связи между объектами, такие, как «над», «за», «перед». Поскольку точное трехмерное расположение точек сцены обычно не может быть вычислено на основе од ного изображения, связи, полученные с помощью этого вида анализа, иногда относятся к так называемой 2,5-мерной информации.
4.1.Описание трехмерной сцены плоскими участками
Один из наиболее простых подходов для сегментации и описания трехмерных структур с помощью координат точек (х, у, z) состоит в разбиении сцены на небольшие плоские«участки» с последующим их объединением в более крупные элементы поверхности в соответствии с некоторым критерием. Этот метод особенно удобен для идентификации многогранных объектов, поверхности которых достаточно гладкие относительно разрешающей способности.
4.2. Применение градиента
Когда сцена задана вокселами, ее можно описать плоскими участками с помощью трехмерного градиента. В этом случае дескрипторы поверхности также получаются в результате объединения этих плоских участков. Вектор градиента указывает направление максимальной скорости изменения функции, а его величина соответствует величине этого изменения. Эти понятия применимы для трехмерного случая и также могут быть использованы для разбиения на сегменты трехмерных структур тем же способом, который применялся для двумерных данных.
4.3. Разметка линий и соединений
Итак, контуры в трехмерной сцене определяются разрывами в данных о координатах и/или интенсивности. После того как был определен набор поверхностей и контуров, располагающихся между ними, окончательное описание сцены может быть получено путем разметки линий, которые соответствуют контурам, и соединений, которые эти контуры образуют.
Выпуклая линия (помеченная +) образуетс я в результате пересечения двух поверхностей выпуклого тела (например, линия, образованная в результате пересечения двух сторон куба). Вогнутая линия (помеченная —) образуется в результате пересечения двух поверхнос тей, принадлежащих двум различным телам (например, пересечение стороны куба с полом). Скрытые линии (помеченные стрелками) представляют собой контуры невидимых поверхностей. Поверхности, закрывающие другие части объекта, располагаются справа направлении стрелок, а невидимые слева. После того как линии сцены дают ключ к пониманию природы трехмерных объектов сцены. Физические ограничения допускают лишь несколько возможных комбинаций меток линий в соединении. Например, сцена в виде многогранника не имеет линий, метки которых могут меняться между вершинами. Нарушение этого правила приводит к объектам, не имеющим физического смысла.
4.4. Обобщенные конусы
Обобщенным конусом (или цилиндром) называется поверхность, получаемая в результате перемещения плоского поперечного сечения вдоль произвольной пространственной кривой (хребта) под постоянным к ней углом, причем поперечное сечение преобразуется по правилу заметания объема. В техническом зрении метод обобщенных конусов независимо от других методов позволяет создавать образы трехмерных структур, что полезно при моделировании и для проверки соответствия по строенных моделей исходным данным.
5.Распознавание
Распознаванием называется процесс разметки, т.е. алгоритмы распознавания идентифицируют каждый объект сцены и присваивают ему метки (гаечный ключ, перемычка). Обычно в большинстве промышленных систем технического зрения предполагается, что объекты сцены сегментированы как отдельные элементы. Другое общее ограничение относится к расположению устройств сбора информации относительно исследуемой сцены (обычно они располагаются перпендикулярно рабочей поверхности). Это приводит к уменьшению отклонений в характеристиках формы, а также упрощает процесс сегментации и описания в результате уменьшения вероятности загораживания одних объектов другими. Управление отклонениями в ориентации объекта производится путем выбора дескрипторов, инвариантных к вращению, или путем использования главных осей объекта для ориентирования его в предварительно определенном направлении.
Современные методы распознавания делятся на две основные категории: теоретические и структурные методы. Теоретические методы основываются на количественном описании (статическая структура), а в основе структурных методов лежат символические описания и их связи (последовательности направлений в границе, закодированной с помощью цепного кода).
6.Интерпретация
Интерпретацию - процесс, который позволяет системе технического зрения приобрести более глубокие знания об окружающей среде по сравнению со знаниями, полученными с помощью методов, изложенных выше. Рассматриваемая с этой точки зрения интерпретация охватывает данные методы как неотъемлемую часть процесса понимания зрительной сцены. Хотя в области технического зрения она и является объектом активных исследований, достижения пока весьма незначительны. Ниже мы кратко рассмотрим проблемы, представляющие современные исследования в этой области технического зрения.
Мощность системы технического зрения определяется ее способностью выделять из сцены значимую информацию при различных условиях наблюдения и использовании минимальных знаний об объектах сцены. По ряду причин (неравномерное освещение, наличие тел, загораживающих объекты, геометрии наблюдения) этот тип обработки представляет трудную задачу. Много внимания уделено методам уменьшения разброса в интенсивности. Способы обратного и структурированного освещения позволяют устранить трудности, связанные с произвольным освещением рабочего пространства. К этим трудностям относятся теневые а ффекты, усложняющие процесс определения контуров, и неоднородности на гладких поверхностях. Это часто Приводит к тому, что они распознаются как отдельные объекты. Очевидно, многие из этих проблем обусловлены тем, что относительно мало известно о моделировании свойств освещения и отражения трехмерных сцен. Методы разметки линий и соединений представляют собой некоторые попытки в этом направлении, но они не в состоянии количественно объяснить эффекты взаимодействия освещения и отражения. Более перс пективный подход основан на математических моделях, описывающих наиболее важные связи между освещением, отражением и характеристиками поверхности, такими, как ориентация.
Проблема загораживания одних объектов другими имеет мес то, когда рассматривается большое число объектов в реальном рабочем пространстве. Даже если бы система была способна идеально выделить группу объектов из фона, то все ранее рассмотренные двумерные процедуры описания и распознавания дали бы плохой результат для большинства загороженных объектов. Применение трехмерных дескрипторов было бы более успешным, но даже они дали бы неполную информацию.
Для обработки сцен требуются описания, которые должны содержать информацию о формах и объемах объектов, а также процедуры для установ ления связей между этими описаниями, даже когда они не являются полными. Несомненно, эти проблемы будут решены только путем разработки методов, позволяющих обрабатывать трехмерную информацию (полученную либо в результате непосредственных измерений, либо с помощью геометрических методов вывода) и устанавливать (необязательно количественно) трехмерные связи на основе информации об интенсивности образа.
Знание о том, в каких случаях интерпретация сцены или части сцены является невозможной, так же важно, как и правильный анализ сцены. Просмотр сцены из различных точек решил бы эту проблему и был бы естественной реакцией интеллектуального наблюдателя.
В этом направлении одним из наиболее перспективных подходов являются исследования в области технического зрения, основанного на моделях . Основ ной идеей метода является интерпретация сцены на основе обнаружения отдельных случаев соответствия между данными образа и трехмерными моделями простейших объемных элементов или же целых объектов, представляющих интерес. Зрение, основанное на трехмерных моделях, имеет другое важное преимущество: оно дает возможность обрабатывать несоответствия в геометрии наблюдения. Изменчивость образа объекта, наблюдаемого из различных положений, является одной из наиболее серьезных проблем технического зрения. Даже для двумерных случаев, где определена геометрия наблюдения, ориентация объекта может сильно влиять на процесс распознавания, если он не управляется соответствующим образом. Одно из преимуществ подхода, основанного на моделях, состоит в том, что в зависимости от известной геометрии наблюдения можно подбирать ориентацию трехмерных моделей с целью упрощения соответствия между неизвестным объектом и тем, что система видит из данной точки наблюдения.
7.Выводы
Основное внимание уделено понятиям и методам технического зрения, применяемым в промышленных приложениях. Сегментация является одним из наиболее важных процессов на ранней стадии распознавания образов системой технического зрения. Следующей задачей систе мы технического зрения является образование набора дескрипторов, который полностью идентифицирует объекты определенного класса. Обычно стремятся выбирать дескрипторы, наименее зависящие от размеров объекта, его ориентации и расположения. Хотя зрение и является трехмерной задачей, большинство современных промышленных систем работает с данными, которые часто упрощаются с помощью методов специального освещения или строго определенной геометрии наблюдения. Сложности возникают, когда эти ограничения ослабляются.
По существу зрение является трехмерной проблемой, поэтому в основе разработки многофункциональных систем технического зрения, пригодных для работы в различных средах, лежит процесс обработки информации о трехмерных сценах. Хотя исследования в этой области имеют более чем 10-летнюю историю, такие факторы, как стоимость, скорость и сложность, тормозят внедрение обработки трехмерной зрительной информации в промышленных приложениях. Мощность системы технического зрения определяется ее способностью выделять из сцены значимую информацию
29-04-2015, 04:16