Техническое зрение роботов

для цепного кода с 4 направле­ниями 10103322 есть 3133030. Если рассматривать код как зам­кнутую последовательность, тогда первый элемент разности можно вычислить, использ уя переход между последним и пер­вым компонентами цепи. В данном примере результатом яв­ляется 33133030. Нормирование можно осуществить путем раз­биения всех границ объекта на одинаковое число равных сег­ментов и последующей подгонкой длин сегментов кода с целью их соответствия этому разбиению.

Изложенные методы нормирования являются точными толь­ко в том случае, когда сами границы инвариантны к повороту и изменению масштаба. Этот случай редко встречается на прак­тике. Например, один и тот же объект, разбитый на элементы в двух различных направлениях, как правило, имеет разную форму границы, причем степень различия пропорциональна раз­решающей способности изображения. Этот эффект можно умень­шить, если выбирать длины элементов цепи большими, чем рас­стояния между пикселами дискретного образа, или же выбирать ориентацию решетки вдоль главных осей кодируе­мого объекта.

3.1.2.Сигнатуры.

Сигнатурой называется одномерное функциональ­ное представление границы. Известно несколько способов соз­дания сигнатур. Одним из наиболее простых является построе­ние отрезка из центра к границе как функции угла. Очевидно, что такие сигнатуры зависят от периметра области и начальной точки. Нормирование периметра можно осуществить, пронормировав кривую r(q) максимальным значением. Пробле­му выбора начальной точки можно решить, определив сначала цепной код границы, а затем применив метод, изложенный в пре­дыдущем разделе. Конечно, расстояние, зависящее от угла, не является единственным способом определения сигнатуры. Напри­мер, можно провести через границу прямую линию и определить угол между касательной к границе и этой линией как функциюположения вдоль границы. Полученная сигнатура, хотя и от­личается от кривой r(q), несет информацию об основных харак­теристиках формы границы. Например, горизонтальные участки кривой соответствовали бы прямым линиям вдоль границы, по­скольку угол касательной здесь постоянен. Один из вариантов этого метода в качестве сигнатуры использует так называемую функцию плотности наклона. Эта функция представляет со­бой гистограмму значений угла касательной. Поскольку гисто­грамма является мерой концентрации величин, функция плотно­сти наклона строго соответствует участкам границы с постоян­ными углами касательной (прямые или почти прямые участки и имеет глубокие провалы для участков, соответствующих быст­рому изменению углов (выступы или другие виды изгибов).

3.1.3.Аппроксимация многоугольниками.

Дискретную границу с произвольной точностью можно аппроксимировать многоуголь­никами. Для замкнутой кривой аппроксимация является точ­ной, когда число сегментов в многоугольнике равно числу точек границы, так что каждая пара соседних точек определяет сег­мент многоугольника. На практике целью аппроксимации мно­гоугольниками является качественное определение формы гра­ницы с помощью минимального числа многоугольных сегментов. Хотя обычно эта проблема нетривиальна и довольно быстро сво­дится к итеративному поиску, требующему больших временных затрат, имеется ряд методов аппроксимации многоугольниками, относительная простота которых и требования к обработке дан­ных делают их пригодными для приложений в области техниче­ского зрения роботов.

В задаче аппроксимации многоугольниками применяются м етоды объединения, основанные на ошибке или других крите­риях. Один из подходов состоит в соединении точек границы линией по методу наименьших квадратов. Линия проводится до тех пор, пока ошибка ап проксимации не превысит ранее задан­ный порог. Когда порог превышается, параметры линии зано­сятся в память, ошибка полагается равной нулю и процедура повторяется; новые точки границы соединяются до тех пор, пока ошибка снова не превысит порог. В конце процедуры образу­ются вершины многоугольника в результате пересечения сосед­них линий. Одна из основных трудностей, связанная с этим под­ходом, состоит в том, что эти вершины обычно не соответствуют изгибам границы (таким, как углы), поскольку новая линия начинается только тогда, когда ошибка превысит порог. Если, например, длинная прямая линия пересекает угол, то числом (зависящим от порога) точек, построенных после пересечения, можно пренебречь ранее, чем будет превышено значение поро­гового уровня. Однако для устранения этой трудности наряду с методами объединения можно использовать методы разбиения.

Один из методов разбиения сегментов границы состоит в по­следовательном делении сегмента на две части до тех пор, пока удовлетворяется заданный критерий. Например, можно потре­бовать, чтобы максимальная длина перпендикуляра, проведен­ного от сегмента границы к линии, соединяющей две крайние точки этого сегмента, не превышала ранее установленного зна­чения порогового уровня. Если это имеет место, наиболее даль­няя точка становится вершиной, разделяя, таким образом, исход­ный сегмент на два подсегмента. Этот метод обладает тем преи­муществом, что он адаптирован к наиболее подходящим точкам изгиба. Для замкнутой границы наилучшей начальной парой точек обычно являются точки, наиболее удаленные от границы.

3.2.Дескрипторы области

Область, представляющую интерес, можно описать формой ее границы или же путем задания ее характери­стик. Важно отметить, что методы, рассмот­ренные выше, применяются для описания областей.

3.2.1.Некоторые простые дескрипторы.

Существующие системы технического зрения основываются на довольно простых де­скрипторах области, что делает их более привлекательными с вычислительной точки зрения. Как следует ожидать, применение этих дескрипторов ограничено ситуациями, в которых представ­ляющие интерес объекты различаются настолько, что для их идентификации достаточно несколько основных дескрипторов.

Площадь области определяется как число пикселов, содер­жащихся в пределах ее границы. Этот дескриптор полезен при сборе информации о взаимном расположении и форме объектов, от которых камера располагается приблизительно на одном и том же расстоянии. Типичным примером может служить рас­познавание системой технического зрения объектов, движу­щихся по конвейеру.

Большая и малая оси области полезны для определения ориентации объекта. Отношение длин этих осей, называемое эксцентриситетом области, также является важным дескриптором для описания формы области.

Периметром области называется длина ее границы. Хотя иногда периметр применяется как дескриптор, чаще он исполь­зуется для определения меры компактности области, равной квадрату периметра, деленному на площадь. Отметим, что ком­пактность является безразмерной величиной (и поэтому инва­риантна к изменению масштаба) и минимальной для поверх­ности, имеющей форму диска.

Связной называется область, в которой любая пара точек может быть соединена кривой, полностью лежащей в этой об­ласти. Для множества связных областей (некоторые из них имеют отверстия) в качестве дескриптора полезно использовать число Эйлера, которое определяется как разность между числом связных областей и числом отверстий. Например, числа Эйлера для букв А и В соответственно равны 0 и —1. Другие дескрип­торы области рассматриваются ниже.

3.2.2.Текстура.

Во многих случаях идентификацию объектов или областей образа можно осуществить, используя дескрипторы текстуры. Хотя не существует формального определения тек­стуры, интуитивно этот дескриптор можно рассматривать как описание свойств поверхности (однородность, шероховатость, ре­гулярность). Двумя основными подходами для описания текстуры являются стати­стический и структурный. Статистические методы дают такие характеристики текстуры, как однородность, шероховатость, зер­нистость и т. д. Структурные методы устанавливают взаимное расп оложение элементарных частей образа, как, например, опи­сание текстуры, основанной на регулярном расположении па­раллельных линий.

3.2.3.Скелет области.

Важным подходом для описания вида струк­туры плоской области является ее представление в виде графа. Во многих случаях для этого определяется схема (скелет) об­ласти с помощью так называемых прореживающих (или же сокращающих) алгоритмов. Прореживающие процедуры иг­рают основную роль в широком диапазоне задач компьютерного зрения — от автоматической проверки печатных плат до под­счета асбестовых волокон в воздушных фильтрах. Скелет об­ласти можно определить через преобразование средних осей (ПСО), предложенное в работе. ПСО областиR с грани­цей В определяется следующим образом. Для каждой точки р из R мы определяем ближайшую к ней точку, лежащую на В. Если р имеет больше одной такой точки, тогда о ней говорится, что она располагается на средней оси (скелете) области R. Важно отметить, что понятие «ближайшая точка» зависит от определения расстояния, и поэтому на результаты операции ПСО будет влиять выбор метрики. Хотя ПСО дает довольно удовлетворительный скелет обла­сти, его прямое применение затруднительно с вычислительной точки зрения, поскольку требуется определение расстояния между каждой точкой области и границы. Был предложен ряд алгоритмов построения средних осей, обладающих большей вычислительной эффективностью. Обычно это алгоритмы про­реживания, которые итеративно устраняют из рассмотрения точки контура области так, чтобы выполнялись следующие ограничения:

1) не устранять крайние точки;

2) не приводить к нарушению связности;

3) не вызывать чрезмерного размывания области.

4.СЕГМЕНТАЦИЯ И ОПИСАНИЕ ТРЕХМЕРНЫХ СТРУКТУР

В предыдущих двух разделах основное внимание уделялось методам сегментации и описания двумерных структур. В этом разделе мы рассмотрим эти задачи применительно к трехмер­ным данным сцены.

По существу зрение яв­ляется трехмерной проблемой, поэтому в основе разработки многофункциональных систем технического зрения, пригодных для работы в различных средах, лежит процесс обработки информации о трехмерных сценах. Хотя исследования в этой области имеют более чем 10-летнюю историю, такие факторы, как стоимость, скорость и сложность, тормозят внедрение обра­ботки трехмерной зрительной информации в промышленных приложениях.

Возможны три основные формы представления информа­ции о трехмерной сцене. Если применяются датчики, измеряю­щие расстояние, то мы получаем координаты (х, у, z) точек поверхностей объектов. Применение устройств, создающих сте­реоизображение, дает трехмерные координаты, а также инфор­мацию об освещенности в каждой точке. В этом случае каждая точка представляется функциейf (х, у, z), где значения послед­ней в точке с координатами (х, у, z) дают значения интенсив­ности в этой точке (для обозначения точки в трехмерном про­странстве и ее интенсивности часто применяется термин вок сел). Наконец, можно установить трехмерные связи на основе одного двумерного образа сцены, т. е. можно выводить связи между объектами, такие, как «над», «за», «перед». Поскольку точное трехмерное расположение точек сцены обычно не может быть вычислено на основе од ного изображения, связи, полу­ченные с помощью этого вида анализа, иногда относятся к так называемой 2,5-мерной информации.

4.1.Описание трехмерной сцены плоскими участками

Один из наиболее простых подходов для сегментации и опи­сания трехмерных структур с помощью координат точек (х, у, z) состоит в разбиении сцены на небольшие плоские«участки» с последующим их объединением в более крупные элементы поверхности в соответствии с некоторым критерием. Этот метод особенно удобен для идентификации многогранных объектов, поверхности которых достаточно гладкие относительно разрешающей способности.

4.2. Применение градиента

Когда сцена задана вокселами, ее можно описать плоскими участками с помощью трехмерного градиента. В этом случае дескрипторы поверхности также получаются в результате объединения этих плоских участков. Вектор градиента указывает направление максимальной скорости из­менения функции, а его величина соответствует величине этого изменения. Эти понятия применимы для трехмерного случая и также могут быть использованы для разбиения на сегменты трехмерных структур тем же способом, который применялся для двумерных данных.

4.3. Разметка линий и соединений

Итак, контуры в трехмерной сцене определяются разры­вами в данных о координатах и/или интенсивности. После того как был определен набор поверхностей и контуров, распола­гающихся между ними, окончательное описание сцены может быть получено путем разметки линий, которые соответствуют контурам, и соединений, которые эти контуры образуют.

Выпуклая линия (помеченная +) образуетс я в результате пересечения двух поверхностей выпуклого тела (например, линия, образо­ванная в результате пересечения двух сторон куба). Вогнутая линия (помеченная —) образуется в результате пересечения двух поверхнос тей, принадлежащих двум различным телам (например, пересечение стороны куба с полом). Скрытые ли­нии (помеченные стрелками) представляют собой контуры не­видимых поверхностей. Поверхности, закрывающие другие части объекта, располагаются справа направлении стрелок, а невидимые слева. После того как линии сцены дают ключ к пониманию природы трехмерных объ­ектов сцены. Физические ограничения допускают лишь несколько возмож­ных комбинаций меток линий в соединении. На­пример, сцена в виде мно­гогранника не имеет ли­ний, метки которых могут меняться между вершина­ми. Нарушение этого пра­вила приводит к объек­там, не имеющим физиче­ского смысла.

4.4. Обобщенные конусы

Обобщенным конусом (или цилиндром) называется поверх­ность, получаемая в результате перемещения плоского попереч­ного сечения вдоль произвольной пространственной кривой (хребта) под постоянным к ней углом, причем поперечное се­чение преобразуется по правилу заметания объема. В техниче­ском зрении метод обобщенных конусов независимо от других методов позволяет создавать образы трехмерных структур, что полезно при моделировании и для проверки соответствия по­ строенных моделей исходным данным.

5.Распознавание

Распознаванием называется процесс разметки, т.е. алгоритмы распознавания идентифицируют каждый объект сцены и присваивают ему метки (гаечный ключ, перемычка). Обычно в большинстве промышленных систем технического зрения предполагается, что объекты сцены сегментированы как отдельные элементы. Другое общее ограничение относится к расположению устройств сбора информации относительно исследуемой сцены (обычно они располагаются перпендикулярно рабочей поверхности). Это приводит к уменьшению отклонений в характеристиках формы, а также упрощает процесс сегментации и описания в результате уменьшения вероятности загораживания одних объектов другими. Управление отклонениями в ориентации объекта производится путем выбора дескрипторов, инвариантных к вращению, или путем использования главных осей объекта для ориентирования его в предварительно определенном направлении.

Современные методы распознавания делятся на две основные категории: теоретические и структурные методы. Теоретические методы основываются на количественном описании (статическая структура), а в основе структурных методов лежат символические описания и их связи (последовательности направлений в границе, закодированной с помощью цепного кода).

6.Интерпретация

Интерпретацию - про­цесс, который позволяет системе технического зрения приоб­рести более глубокие знания об окружающей среде по сравне­нию со знаниями, полученными с помощью методов, изложенных выше. Рассматриваемая с этой точки зрения интерпретация охватывает данные методы как неотъемлемую часть процесса понимания зрительной сцены. Хотя в области технического зре­ния она и является объектом активных исследований, достиже­ния пока весьма незначительны. Ниже мы кратко рассмотрим проблемы, представляющие современные исследования в этой области технического зрения.

Мощность системы технического зрения определяется ее способностью выделять из сцены значимую информацию при различных условиях наблюдения и использовании минимальных знаний об объектах сцены. По ряду причин (неравномерное освещение, наличие тел, загораживающих объекты, геометрии наблюдения) этот тип обработки представляет трудную задачу. Много внимания уделено методам уменьшения раз­броса в интенсивности. Способы обратного и структурирован­ного освещения позволяют устра­нить трудности, связанные с произвольным освещением ра­бочего пространства. К этим трудностям относятся теневые а ффекты, усложняющие процесс определения контуров, и неодно­родности на гладких поверхностях. Это часто Приводит к тому, что они распознаются как отдельные объекты. Очевидно, многие из этих проблем обусловлены тем, что относительно мало из­вестно о моделировании свойств освещения и отражения трех­мерных сцен. Методы разметки линий и соединений представляют собой некоторые попытки в этом направлении, но они не в состоянии количественно объяснить эффекты взаимодействия освещения и отражения. Более пер­с пективный подход основан на математических моделях, опи­сывающих наиболее важные связи между освещением, отраже­нием и характеристиками поверхности, такими, как ориентация.

Проблема загораживания одних объектов другими имеет ме­с то, когда рассматривается большое число объектов в реальном рабочем пространстве. Даже если бы система была способна идеально выделить группу объектов из фона, то все ранее рассмотренные двумерные про­цедуры описания и распознавания дали бы плохой результат для большинства загороженных объектов. Применение трех­мерных дескрипторов было бы более успешным, но даже они дали бы неполную информацию.

Для обработки сцен требуются описания, которые должны содержать информацию о формах и объемах объектов, а также процедуры для установ ления связей между этими описаниями, даже когда они не яв­ляются полными. Несомненно, эти проблемы будут решены только путем разработки методов, позволяющих обрабатывать трехмерную информацию (полученную либо в результате не­посредственных измерений, либо с помощью геометрических ме­тодов вывода) и устанавливать (необязательно количественно) трехмерные связи на основе информации об интенсивности образа.

Знание о том, в каких случаях интерпретация сцены или части сцены является невоз­можной, так же важно, как и правильный анализ сцены. Про­смотр сцены из различных точек решил бы эту проблему и был бы естественной реакцией интеллектуального наблюдателя.

В этом направлении одним из наиболее перспективных под­ходов являются исследования в области технического зрения, основанного на моделях . Основ ной идеей метода является интерпретация сцены на основе обнаружения отдельных слу­чаев соответствия между данными образа и трехмерными мо­делями простейших объемных элементов или же целых объек­тов, представляющих интерес. Зрение, основанное на трехмер­ных моделях, имеет другое важное преимущество: оно дает воз­можность обрабатывать несоответствия в геометрии наблю­дения. Изменчивость образа объекта, наблюдаемого из раз­личных положений, является одной из наиболее серьезных проб­лем технического зрения. Даже для двумерных случаев, где определена геометрия наблюдения, ориентация объекта может сильно влиять на процесс распознавания, если он не управ­ляется соответствующим образом. Одно из преимуществ подхода, основанного на моделях, состоит в том, что в зависимости от известной геометрии наблюдения можно подбирать ориентацию трехмерных моделей с целью упрощения соответствия между неизвестным объектом и тем, что система видит из данной точки наблюдения.

7.Выводы

Основное внимание уделено понятиям и методам технического зрения, применяемым в промышленных приложениях. Сегментация является одним из наиболее важных процессов на ранней стадии распознавания образов системой технического зрения. Следующей задачей систе мы технического зрения является образование набора дескрипторов, который полностью идентифицирует объекты определенного класса. Обычно стремятся выбирать дескрипторы, наименее зависящие от размеров объекта, его ориентации и расположения. Хотя зрение и является трехмерной задачей, большинство современных промышленных систем работает с данными, которые часто упрощаются с помощью методов специального освещения или строго определенной геометрии наблюдения. Сложности возникают, когда эти ограничения ослабляются.

По существу зрение яв­ляется трехмерной проблемой, поэтому в основе разработки многофункциональных систем технического зрения, пригодных для работы в различных средах, лежит процесс обработки информации о трехмерных сценах. Хотя исследования в этой области имеют более чем 10-летнюю историю, такие факторы, как стоимость, скорость и сложность, тормозят внедрение обра­ботки трехмерной зрительной информации в промышленных приложениях. Мощность системы технического зрения определяется ее способностью выделять из сцены значимую информацию


29-04-2015, 04:16


Страницы: 1 2 3 4
Разделы сайта