Разработка поточных технологических линий обслуживания животных для ферм крупного рогатого скота

где Тдоп – допустимое время первичной обработке молока. ч.

Wпон =0.55 *13357/2 = 3,7 т/ч

Для первичной обработки молока используется очиститель молока ОМ –1, танк – охладитель ТОМ –2А, в качестве источника холода – машина МХУ –8С. Так как молокозавод находится за 30 км от фермы, доставка молока на молокозавод производится в автомобильной цистерне АЦПТ- 2,8.

2.7.5 Линия создания микроклимата. Воздух становится непригодным или вредным, если он содержит большое количество газа, пыли, пара и.т.д. а температура его высока. Следовательно, одним из важных мероприятий оптимальной технологии содержания животных является поддержание в животноводческих помещениях микроклимата. По воздухообмену рассчитываются основные элементы систем вентиляции.

В зависимости от вида основных вредных выделений воздухообмен рассчитывается по:

1) допустимому содержанию углекислоты;

2) удалению лишней влаги и тепла.

По допустимому содержанию углекислоты воздухообмен определяется по формуле:

Ðво = Рm /(Р2 - Р1 ), (2.37.)

Р – количество углекислоты, выделяемой одним животным,

Р = 141 дм3 /ч [3. С. 18]

m - число животных в помещении;

Р2 - предельно допустимая концентрация углекислоты для данного помещения,

Р2 = 3 Дм33 [3. с. 23]

Р1 - содержание углекислоты в свежем приточном воздухе,

Р1= 0.3 … 0.4 Дм33 [3. с. 17]

Ðво = 141*200/(3-0,35) = 10642 м3

В проектируем коровнике применяется приточно-вытяжная вентиляция с естественным побудителем воздуха. Общая площадь Fобщ . вытяжных каналов определяется по формуле:

Fобщво /3600 ύ (2.38.)

ύ – скорость движения воздуха в вытяжных каналах, м/с

ύ= Ö [2gH( Pн –Pв ) ]/Рв , (2.39.)

где H – высота вытяжной трубы, м;

g – ускорение силы тяжести, м/с2 ;

Pн , Pв -плотность воздуха соответственно снаружи и внутри помещения, кг/м3

ύ= Ö [2*9,81*1,5 ( 1,396-1,248) ]/1,248= 1,87 м/с

Fобщ =10642 /3600*1,87 =1,6 м2

Количество вытяжных каналов подсчитывается по формуле:

nв =Fобщ /fв , (2.40)

где fв – площадь поперечного сечения одного вытяжного канала,

fв =0,36 м2 [ 6. С. 148]

nв =1,6/0,36 =5

Общая площадь поперечного сечения приточных каналов принимается по формуле:

Fпр =0,6Fобщ (2.41.)

Fпр =0,6*1,6 = 0,96 м2

Количество приточных каналов:

nпр =Fпр /fпр , (2.42.)

где fпр – площадь поперечного сечения одного приточного канала,

fпр = 0,04 м2 [6 .с. 147]

nпр =0,96/0,04 =24

Расчет естественного освещения сводится к выбору количества окон, их расположение вдоль здания. Степень естественного освещения характеризуется световым коэффициентом Кок , т.е отношением площади окон к площади пола. Для коровника с привязным содержанием коров при доении в стойлах

Кок = 1/10…1/15 [ 3.с.35]

Площадь окон определяется по формуле:

Fок = Fп Кок , (2.43.)

где Fп -площадь пола, м2 .

Fок = 1512*1/15 = 100м2

Число окон, необходимое для получения нужной освещенности определяется по формуле:

nок =Fок /fок , (2.44.)

где fок – площадь одного оконного проёма,

Fок = 1,98 м2 [6. c. 165]

nок =100 /1,98 =50

Окна располагаются по периметру здания на высоте 1,2 м.

Расчет искусственного освещения сводится к выбору типа светильников, их числа и рационального размещения.

Необходимое количество ламп определяется исходя из удельной мощности ламп по формуле:

nл =S*W/Wл , (2.45.)

где S –площадь освещаемого помещения, м2 ;

W – удельная мощность на 1 м2 пола, Вт м2 ;

Wл – мощность одной лампочки, Вт

nл =1512*2/100 = 30 шт

Коэффициент освещенности помещения определяется по формуле:

j = S/Hn* (а+в), (2.46.)

где Hn – высота подвеса светильников, м;

а, в - соответственно длина и ширина помещения, м

j = 1512/[3*(72+21)] =8,2

Выбираются светильники полугерметические ПГ – 60, которые подвешиваются в два ряда высоте 3 м с расстоянием между ними 5 м.

2.8. Выбор оптимальных вариантов технологических линий с

помощью ЭВМ и разработка комплекта машин.

Для экономической оценки технологических линий рассчитываются эксплуатационные затраты. Размер эксплуатационных затрат определяется по каждому из сравниваемых вариантов по формуле:

Uэ = З+А+Р+Сrэ , (2.47.)

где Uэ – эксплуатационные затраты, связанные с выполнением

производственных процессов на животноводческой

ферме за год отдельной машиной или комплектом

машин, грн

З – заработная плата рабочим, грн

А – аммортизация машин, грн;

Р – отчисления на текущий ремонт и технологическое

обслуживания машин, грн;

Сr – затраты на горючесмазочные материалы и твердое топливо, грн;

Сэ , - затраты на электроэнергию, грн;

Зароботная плата рабочих, занятых на выполнении механизированных процессов равна:

З = Т*Л*Ст , (2.48.)

где Т – продолжительность работы за год на выполнения

производственного процесса, ч;

Л – количество рабочих занятых на выполнении процесса, чел;

Ст – часовая тарифная ставка с дополнительными начислениями, грн;

Амортизация машин определяется по формуле:

А = Ба/100, (2.49.)

где Б – балансовая стоимость машины, грн;

а – норма ежегодных амортизационных отчислений, проц;

Балансовая стоимость технологического оборудования равна:

Б = См Км , (2.50.)

где См – оптовая цена машины, грн;

Км – коэффициент, учитывающий затраты на монтаж, разборку,

транспортировку и торговые наложения.

Затраты на текущий ремонт и техническое обслуживание определяется по формуле:

Р =Бр/100, (2.51.)

где р – норма ежегодных отчислений на ТР и ТО, проц;

Затраты на горюче-смазочные материалы и топливо определяются по формуле:

Сг = Ng*Тг *h*Цк , (2.52.)

где N – номинальная мощность двигателя машины или трактора, л.с.;

g – удельный расход основного горючего, кг л.о.в.ч.;

Тг – годовая продолжительность работы машины на ферме, ч

Цк –комплексная цена 1 кг горючего, грн;

Затраты на расходуемую электроэнергию рассчитываются по формуле:

Сэ = Fг *Zэ (2.53.)

где Fг – годовое потребление технологической электроэнергии, кВт-ч;

Zэ – стоимость кВт-ч электроэнергии, грн;

Годовой расход электроэнергии на технологические нужды определяется по формуле:

Fг = Nэ * Тг * Кзосnд ( 2.54.)

где Nэ – потребляемая мощность установленного оборудования, кВт;

Тг – продолжительность работы машины за год, ч;

Кз – коэффициент загрузки оборудования;

Ко – коэффициент одновременности работы оборудования;

Кс – коэффициент, учитывающий потери в электросети;

Кnд коэффициент полезного действия электродвигателя.

Приведенные затраты определяются по формуле:

Un =Uэнс , (2.55.)

где Ен – нормативный коэффициент эффективности капитальных вложений;

Бс – суммарная балансовая стоимость машин и оборудования, грн

В итоге выражение для определения приведенных эксплуатационных затрат примет следующий вид :

Uп = G*ZГ /Wм (Л*Сг + N*g*h*0,099 + Nэ Zэ 0,7) + Б/100( a + р + 15 ), (2.56.)

где G – масса продукции, перерабатываемой за сутки машиной, кг;

Zг - количество дней работы машины в году;

Wм – производительность машины, т/ч .

Для примера рассчитывается линия погрузки, доставки и раздачи силоса

Исходный вариант:

ПСК –5 –1 шт.; КТУ – 10А - 8шт.; МТЗ – 80 –9шт.

Для этого варианта получается

Uп мтз-80 = G*ZГ /Wпск-5 (Л*Сг + N*g*h*0,099) + Бмтз –80 /100( a + р + 15 )=

= 20*200/13(1*0,58+0,099*75*0,19*0,8)+3500 /100 (15+9,9+15)=

=1924,4 грн

Uп пск-5 = Бпск -5 /100*( a + р + 15 ) = 1160/100(16,6+14+15)=528,96 грн

Uп мтз -80 = Gг *ZГ /Wкту-10А (Л*Сг + Ng*h*0,099*3) + 3*Бмтз-80 /100( a + р + 15 )=

=20*200/10(3*0,58+3*0,099*75*0,19*0,5)+3*3500/100*(15+9,9+15)=

=5732 грн

Uп кту –10А = 3*Бкту-10А /100*( a + р + 15 ) = 3*1500/100(16,6+14+15) = 2052 грн,

Uпл = Un мтз-80 + Unпск-5 + Unмтз –80 + Un кту –10А =

= 1924,4+528,96+5732+2052 =10237,36грн

Удельные приведенные затраты для этого варианта линии погрузки, доставки и раздачи силоса определяются по формуле:

Uп уд. = Uпл /GZг (2.57.)

Uп уд. = 10237,36 /20*200=2,56 грн

Аналогично производятся расчёты и для других технологических линий. Расчёты производятся с помощью ЭВМ. Исходные данные для выбора оптимальных вариантов технологических линий и их расчет, выполненный ЭВМ даны в приложении 1. На основании этих расчётов выбирается комплект машин, который представлен в таблице 2.7.

Таблица 2.7 Сводная ведомость комплекта машин

Наименование машин и оборудования

Марка

Количество

1. Трактор колёсный

2. Прицеп тракторный

3. Прицеп тракторный

4. Погрузчик грейферный

5. Погрузчик стебельных кормов

6. Соломосилосорезка

7. Кормораздатчик

8. Автопоилка

Наименование машин и оборудования

9. Сборно-блочная водонапорная башня

10. Автоматическая водоподъёмная

установка

11. Доильная установка

12. Очиститель молока

13. Молокозборник

14. Насос молочный

15. Фильтр молочный

16. Танк для хранения молока

17. Источник холода

18. Автоцистерна

19. Навозоуборочный транспортер

МТЗ – 80

2-ПТС-4-877А

1-ПТС-2Н

ПГ-0,5Д

ПСК-5

РСС-6Б

КТУ-10А

АП-1А

Марка

БР-15У

ВУ-10-30

АДМ-8

ОМ-1

-

-

-

ТОМ-2А

ТХУ-14

АЦПТ –2,8

ТСН-160А

8

10

2

1

1

2

8

768

Количество

1

1

4

4

4

4

4

4

4

1

8

2.9 Разработка генерального плана фермы.

Разработка генерального плана фермы производится путём сопоставления нескольких вариантов генерального плана с целью выбора наиболее рациональных планировочных решений. Выбор варианта генерального плана производится путём сравнения технико- экономических показателей, отвечающих требованиям технологических и строительных норм и правил. То есть, генеральный план разрабатывается так, чтобы здание и сооружения были расположены в соответствии с принятым технологическим процессом, с зооветеринарными и противопожарными разрывами.

На генеральном плане должны быть выделены три основные зоны: производственная, хозяйственная и ветеринарная. В производственной зоне находятся животноводческие здания, коровники, родильные отделения. В хозяйственной зоне- кормовые площадки, в ветеринарной – изолятор, амбулатория, санбойня, карантинное отделение.

На въезде размещается санитарный блок с проходной, с дезбарьером, а так же дом животноводов. У дома животноводов расположена площадка отдыха и стенды – витрины, с фотографиями передовиков производства, доска показателей и другие малые архитектурные формы.

Инженерные сети прокладываются по кратчайшему расстоянию с сохранением прямолинейности отдельных участков и ветвей. Территория фермы благоустраивается посадкой декоративных деревьев, устройством газонов и ограждается забором. Основные показатели генерального плана фермы представлены в таблице 2.8.

Таблицы 2.8 Основные показатели генерального плана фермы

Наименование показателя

Размерность

Значение

Площадь участка фермы

Площадь застройки

Площадь озеленения

Протяженность автодорог

Коэффициент застройки

Коэффициент использования участка

м2

м2

м2

м

173900

78844

13923

2563

0,45

0,68


3. Разработка устройства к навозоуборочному транспортёру

ТСН- 160А для очистки стойл

3.1. Зооинженерные требования к устройствам для очистки стойл

Устройства для очистки стойл должны отвечать следующим требованиям:

1) обеспечивать постоянную и легко поддерживающую чистоту;

2) исключать передачу информации из одного помещения в другое;

3) быть удобным в эксплуатации при минимальных затратах на техническое обслуживание и ремонт; затраты труда на техническое обслуживание не должны превышать 0,2 чел.-ч;

4) быть безопасным для животных и обслуживающего персонала;

5) очищать стойла от навоза полностью без дополнительного, ручного труда;

6) конструкция устройства должна соответствовать требованиям, предъявляемым к устройствам, работающим в агрессивных жидких средах;

7) в конструкции устройства должны бить использованы унифицированные узлы и детали, используемые в сельскохозяйственном машиностроении.

3.2. Анализ средств механизации очистки стойл по

литературным и патентным материалам

3.2.1. Устройство для уборки навоза. А.С. II92746 СССР.

Предлагаемое устройство включает в себя установленную на раме на вертикальном валу и расположенную над задним краем стойла ротационную щётку для сбрасывания навоза в канал, в котором размещён скребок. С целью предотвращения травматизма животных при уборке навоза из стойл, смонтированных на подвижной платформе, раме выполнена в виде двухплечего рычага, снабженного ограничительным упором.. На одном плече рычага закреплена щетка, а его противоположное плечо подпружиненно. Щетка снабжена кожухом, выполненным в виде диска с цилиндрической отбортовкой к низу на его периферии.

3.2.2. Агрегат для уборки, погрузки навоза и разбрасывания подстилки.

А.С. 1297775 СССР. С целью повышения равномерности разбрасывания подстилки, а также качества уборки навоза предлагаемый агрегат содержит сбрасывающее устройство. Выполненное в виде подпружиненного ротора. Ротор установлен под выгрузной частью поперечного транспортера с возможностью углового перемещения относительно оси в плоскости, перпендикулярной направлению перемещения агрегата. Ротор связан с транспортером посредствам стоек. Скребки для уборки навоза поворачиваются вокруг вертикальной оси и очищает навоз с поверхности стойл. Скребки соединены с передней частью боковых стенок ковша маятниковыми опорами. Ролики, взаимодействуя с вертикальной стенкой стойла, поворачивают скребки.

3.2.3. Устройство для уборки навоза А.С.1358858 СССР.

Устройство содержит основные скребки 2 (рис 3.1.) и дополнительные скребки 7, удаляющие навоз соответственно из навозной канавки 3 и с задней поверхности стойл 8. Скребки связаны между собой через консольные рычаги 5, причем, последние при помощи шарниров 4 закреплены на основных скребках и контактируют с их верхними поверхностями. В процессе уборки навоза за счет параболической формы рабочей поверхности дополнительных скребков от захватываемой ими навозной массы создается поворотный момент, передаваемый через консольные рычаги 5 основными скребками 2. В результате основные скребки 2 прижимают к днищу навозного канала 3.

Рис. 3.1. Устройство для уборки навоза.

1. цепь транспортёра;

2. основной скребок;

3. навозный канал;

4. шарнирное соединение;

5. консольный рычаг;

6. шлицевое соединение;

7. дополнительный скребок;

8. поверхность стойла.

3.2.4. Устройство для уборки навоза. Австрийский патент №3339652.

Рис. 3.2.Устройство для уборки навоза.

1. направляющий элемент;

2. выступы;

3. штанга;

4. скребок;

5. стойка;

6. болт;

7. стопорная пластина.

3.2.5. Назаров С.И., Прокопенко К.И. Механизация очистки стоил

[27. с. 33…34]. Разработан мобильный механический очиститель стойл

(рис 3.3.).Привод очистителя: электродвигатель 1,5 кВт, редуктор РЧУ –63А. Питание через гибкий кабель, подвешенный над конвейером. При работе конвейера очиститель движется вдоль стойл. Скребки 5 счищают навоз с поверхности стойл в навозный канал.

Рис.3.3.Схема очистителя стойл.

1. рама;

2. привод;

3. самоустанавливающиеся колеса;

4. цепь транспортера;

5. скребок;

6. ведомый вал;

7. ведущий вал;

8. поверхность стойла.

3.2.6. Журавлев Б.И., Бородулин Е.Н., Макаров Э.Р., Соловьев Р.В. Новая технология уборки навоза на фермах крупного рогатого скота [28. С. 22…24]. Предлагается укороченное стойло (рис.3.4.), длина которого на 50…100 мм больше длины косой животного и расположенное на 100…150 мм выше решетки навозного канала. Более низкие уступы ведут к загрязнению стойла, более высокие опасны для животных. Боковые ограничители устанавливают на высоте 1000 мм и длине 1000…1200 мм. Для удобства работы доярок через один длинный устанавливают один короткий ограничитель длиной 600…800мм. Большое значение имеет наклон пола стойл. Стойла имеют ширину 1200мм, уклон пола1%. На пол коротких стойл попадает 22%кала и 17% мочи, а длинных соответственно 94 и 93%.

Затраты труда на уборку понижаются в 2-3 раза. Если же убирать навоз один раз в смену, то можно вдвое уменьшить число скотников.

Рис.3.4. Укороченное стойло.

3.3.Выбор и обоснование конструкции для уборки стойл

Цель конструирования – повышение качеств уборки навоза, снижение затрат ручного труда при обслуживании животных. Конструкция устройства

(рис 3.5.)содержит промышленный транспортер ТСН – 160А 1 и дополнительные скребки 2, удаляющие навоз с задней поверхности стойла 9. Дополнительный скребок 2 посажен на вал 4, который вращается в чугунной втулке 6. Втулка 6 посажена в стакан 5, который приваривается ручной электродуговой сваркой к плите 3. Со стороны стойла к плите 3 приварена проушина 8, в которую входит штырь 11, фиксирующий плиту.

Рис.3.5.Схема конструкции для очистки стойл.

1. транспортер скребковый навозоуборочный ТСН –160А;

2. дополнительный скребок;

3. плита;

4. вал;

5. стакан;

6. втулка;

7. звездочка;

8. проушина;

9. стойло;

10. анкерные болты крепления конструкции;

11. штырь фиксирующий плиту.

При движении транспортера 1 звездочка 7 приводится в движение и вращает вал 4 с дополнительным скребком 2. Плита 3 крепится двумя


29-04-2015, 04:12


Страницы: 1 2 3 4 5 6 7
Разделы сайта