Сравнительный анализ и общая характеристика истории развития естественнонаучных картин мира
Введение
«Первый шаг – создание из обыденной жизни картины мира – дело чистой науки», – писал выдающийся физик XX в. М. Планк[1] .
Исторически первой естественнонаучной картиной мира нового времени была механистическая картина, которая напоминала часы: любое событие однозначно определяется начальными условиями, задаваемыми (по крайней мере, в принципе) абсолютно точно, а в таком мире нет места случайности. В нем возможен «демон Лапласа» – существо, способное охватить всю совокупность данных о состоянии Вселенной в любой момент времени, могло бы не только точно предсказать будущее, но и до мельчайших подробностей восстановить прошлое. Представление о Вселенной как о гигантской заводной игрушке преобладало в XVII – XVIII в. в. Оно имело религиозную основу, поскольку сама наука вышла из недр христианства.
Бог как рациональное существо создал мир в основе своей рациональный, и человек как рациональное существо, созданное Богом по своему образу и подобию, способен познать мир. Такова основа веры классической науки в себя и людей в науку. Отринув религию, человек эпохи Возрождения продолжал мыслить религиозно. Механистическая картина мира предполагала Бога как часовщика и строителя Вселенной.
Механистическая картина мира основывалась на следующих принципах: связь теории с практикой; использование математики; эксперимент реальный и мысленный; критический анализ и проверка данных; главный вопрос: как, а не почему; нет «стрелы времени» (регулярность, детерминированность и обратимость траекторий).
Но XIX в. пришел к парадоксальному выводу: «Если бы мир был гигантской машиной, – провозгласила термодинамика, – то такая машина неизбежно должна была бы остановиться, т. к. запас полезной энергии рано или поздно был бы исчерпан»[2] . Затем пришел Дарвин со своей теорией эволюции и произошел сдвиг интереса от физики в сторону биологии.
Главный результат современного естествознания, по Гейзенбергу, в том, что оно разрушило неподвижную систему понятий XIX в. и усилило интерес к античной предшественнице науки – философской рациональности Аристотеля.
«Одним из главных источников аристотелевского мышления явилось наблюдение эмбрионального развития – высокоорганизованного процесса, в котором взаимосвязанные, хотя и внешне независимые события происходят, как бы подчиняясь единому глобальному плану. Подобно развивающемуся зародышу, вся аристотелевская природа построена на конечных причинах. Цель всякого изменения, если оно сообразно природе вещей, состоит в том, чтобы реализовать в каждом организме идеал его рациональной сущности.
В этой сущности, которая в применении к живому есть в одно и то же время его окончательная, формальная и действующая причина, – ключ к пониманию природы. Рождение современной науки – столкновение между последователями Аристотеля и Галилея – есть столкновение между двумя формами рациональности»[3] .
Итак, можно выделить три картины мира: электромагнитную, механистическую, эволюционную. В современной естественнонаучной картине мира имеет место саморазвитие. В этой картине присутствует человек и его мысль. Она эволюционна и необратима. В ней естественнонаучное знание неразрывно связано с гуманитарным.
1. Механистическая картина мира.
К совершенству стремились в XVII-XIX веках именно частные науки, которые только-только начинали обретать статус самостоятельности и науки. Это был период прорыва их к новым горизонтам истин.
Классическая механика выработала иные представления о мире, материи, пространстве и времени, движении и развитии, отмеченные от прежних и создала новые категории мышления - вещь, свойство, отношение, элемент, часть, целое, причина, следствие, система - сквозь призму которых сама стала смотреть на мир, описывать и объяснять его.
Новые представления об устройстве мира привели к созданию и Новой Картины мира - механистической, в основе которой лежали представления о вселенной как замкнутой системе, уподобляемой механическим часам, которые состоят из незаменимых, подчиненных друг другу элементов, ход которых строго подчиняется законам классической механики[4] .
Законам механики подчиняются все и вся, входящие в состав вселенной, а, следовательно, законам этим приписываются универсальность. Как и в механических часах, в которых ход одного элемента строго подчинен ходу другого, так и во вселенной, согласно механистической картине мира, все процессы и явления строго причинно связаны между собой нет места случайности и все предопределено.
В механистической картине мира задаются мировоззренческие ориентации и методологические принципы познания. Механицизм, детерминизм, редукционизм образуют систему принципов, регулирующих исследовательскую деятельность человека. Открывая законы, описывающие природные явления и процессы, человек противопоставляет себя природе, возвышает себя до уровня хозяина природы.
Так человек ставит свою деятельность на научную основу, ибо он, исходя из механистической картины мира, уверился в возможность с помощью научного мышления выявить универсальные законы функционирования мира. Эта деятельность оформляется в рационалистическую. Безусловно, предполагается, что такая деятельность целиком должна основываться на целевых установках, принципах, нормах, методах познания объекта. Поступки (научные) и действия исследователя, основанные на предписаниях методического характера обретают черты устойчивого образа деятельности.
В рассматриваемый период исследовательская деятельность в астрономии, механике, физике была достаточно рационализирована, а сами эти науки занимали лидирующее место в естествознании.
Физика как наиболее разработанная область естествоиспытания, задавала фон для развития других отраслей науки. Последние же тяготели к рационально-методологическим принципам и понятиям физики, механики. Как это на самом деле происходило можно проследить на историко-научном материале биологии.
В XVII – нач. XIX вв. был период господства механической картины мира. Законы механики рассматриваются как универсальные и единые для всех отраслей естествознания.
Эмпирические факты биологии, являющиеся фиксацией наблюдаемых в периоде единичных явлений, редуцируются к механическим закономерностям, Иными словами, способ формирования фактов в биологии строится на механистических представлениях о мире.
Например, такие факты, как: "Птица, которую потребность влечет к воде, чтобы найти здесь себе жизненное пропитание, раздвигает пальцы на ногах, готовясь грести и плыть по водной поверхности"; "Кожа, соединяющая пальцы при основании, привыкает растягиваться благодаря этим беспрестанно повторяющимся раздвиганиям пальцев[5] .
Так, со временем образовались те широкие перепонки между пальцами уток, грей, какие видим сейчас", целиком детерминированы идеями механистического детерминизма. Это однозначно видно из интерпретации указанных фактов. "Частое пользование органом, обратившееся в привычку, увеличивает способность того органа, развивает его самого и сообщает ему размеры и силу действия"; "Неупотребление органа, сделавшееся постоянным вследствие усвоенных привычек, постепенно ослабляет этот орган и, в конце концов, приводит его к исчезновению и даже к полному уничтожению".
Механистический подход к системе адаптации "животный организм – окружающая среда" дает соответствующий эмпирический материал.
2. Электромагнитная картина мира .
Уже в прошлом веке физики дополнили механистическую картину мира электромагнитной. Электрические и магнитные явления были известны им давно, но изучались обособленно друг от друга. Дальнейшее их исследование показало, что между ними существует глубокая взаимосвязь, что заставило ученых искать эту связь и создать единую электромагнитную теорию[6] .
Действительно, ученый Эрстед (1777-1851), поместив над проводником, по которому идет электрический ток, магнитную стрелку, обнаружил, что она отклоняется от первоначального положения. Это привело ученого к мысли, что электрический ток создает магнитное поле[7] .
Позднее английский физик Майкл Фарадей (1791-1867), вращая замкнутый контур в магнитном поле, обнаружил, что в нем возникает электрический ток. На основе опытов Фарадея и других ученых английский физик Джеймс Клерк Максвелл (1831-1879) создал свою электромагнитную теорию[8] . Таким путем было доказано, что в мире существуют не только вещество в виде тел, но и разнообразные физические поля. Одно из них было известно и во времена Ньютона и теперь называется гравитационным полем, а раньше рассматривалось просто как сила притяжения, возникающая между материальными телами. После того как объектом изучения физиков наряду с веществом стали разнообразные поля, картина мира приобрела более сложный характер. Тем не менее, это была картина классической физики, которая изучала знакомый нам макромир. Положение коренным образом изменилось, когда ученые перешли к исследованию процессов в микромире. Здесь их ожидали новые необычайные открытия и явления.
Изучение экономики предполагает и предварительное рассмотрение панорамы современного естествознания, поскольку исследование происходящих экономических процессов невозможно без применения современных научных методов для понимания природных явлений как неотъемлемой части жизнедеятельности человека, в том числе и экономической. В то же время рассмотрение тенденций развития современного естествознания позволит различать экстенсивный и интенсивный характер изменения способов познания природы по аналогии с экстенсивным и интенсивным развитием экономики. Так, экстенсивное развитие естествознания обеспечивается проявлением и совершенствованием уже имеющихся способов исследования природы, в то время как интенсивный – возникновением качественно новых способов.
В конце прошлого и начале нынешнего веков в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, своеобразными кирпичиками, из которых состоит природа, считались атомы, то в конце прошлого века были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишенных заряда частиц).
Согласно первой модели атома, построенной английским ученым Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной Солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся датским физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергии. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую[9] .
Значительно изменились также взгляды на энергию. Если раньше предполагалось, что энергия излучается непрерывно, то тщательно поставленные эксперименты убедили физиков, что она может испускаться отдельными квантами. Об этом свидетельствует, например, явление фотоэффекта, когда кванты видимого света вызывают электрический ток. Это явление, как известно, используется в фотоэкспонометрах, которыми пользуются в фотографии для определения выдержки при экспозиции.
В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путем было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля – свойства корпускул. Это получило название дуализма волны и частицы и было представлением, которое никак не укладывалось в рамки обычного здравого смысла.
До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а физические поля — волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов ученые вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.
В 1925-1927 гг. для объяснения процессов, происходящих в мире мельчайших частиц материи – микромире, была создана новая волновая, или квантовая, механика. Последнее название и утвердилось за новой наукой. Впоследствии возникли и разнообразные другие квантовые теории: квантовая электродинамика, теория элементарных частиц и другие, которые исследуют закономерности движения в микромире.
Другая фундаментальная теория современной физики – теория относительности, в корне изменившая научные представления о пространстве и времени. В специальной теории относительности получил дальнейшее применение установленный еще Галилеем принцип относительности в механическом движении. Согласно этому принципу во всех инерциальных системах, т.е. системах отсчета, движущихся друг относительно друга равномерно и прямолинейно, все механические процессы происходят одинаковым образом, и поэтому их законы имеют ковариантную, или ту же самую математическую, форму. Наблюдатели в таких системах не заметят никакой разницы в протекании механических явлений. В дальнейшем принцип относительности был использован и для описания электромагнитных процессов. Точнее говоря, сама специальная теория относительности появилась в связи с преодолением трудностей, возникших при описании физических явлений.
Важный методологический урок, который был получен из специальной теории относительности, состоит в том, что она впервые ясно показала, что все движения, происходящие в природе, имеют относительный характер. Это означает, что в природе не существует никакой абсолютной системы отсчета и, следовательно, абсолютного движения, которые допускала ньютоновская механика.
Еще более радикальные изменения в учении о пространстве и времени произошли в связи с созданием общей теории относительности, которую нередко называют новой теорией тяготения, принципиально отличной от классической ньютоновской теории. Эта теория впервые ясно и четко установила связь между свойствами движущихся материальных тел и их пространственно-временной метрикой. Теоретические выводы из нее были экспериментально подтверждены во время наблюдения солнечного затмения. Согласно предсказаниям теории луч света, идущий от далекой звезды и проходящий вблизи Солнца, должен отклониться от своего прямолинейного пути и искривиться, что и было подтверждено наблюдениями. Более подробно эти вопросы мы рассмотрим в следующей главе. Здесь же достаточно отметить, что общая теория относительности показала глубокую связь между движением материальных тел, а именно тяготеющих масс, и структурой физического пространства – времени.
Научно-техническая революция, развернувшаяся в последние десятилетия, внесла много нового в наши представления о естественно-научной картине мира. Возникновение системного подхода позволило взглянуть на окружающий нас мир как на единое, целостное образование, состоящее из огромного множества взаимодействующих друг с другом систем[10] .
С другой стороны, появление такого междисциплинарного направления исследований, как синергетика, или учение о самоорганизации, дало возможность не только раскрыть внутренние механизмы всех эволюционных процессов, которые происходят в природе, но и представить весь мир как мир самоорганизующихся процессов. Заслуга синергетики состоит прежде всего в том, что она впервые показала, что процессы самоорганизации могут происходить в простейших системах неорганической природы, если для этого имеются определенные условия (открытость системы и ее неравновесность, достаточное удаление от точки равновесия и некоторые другие). Чем сложнее система, тем более высокий уровень имеют в ней процессы самоорганизации. Так, уже на предбиологическом уровне возникают автопоэтические процессы, т.е. процессы самообновления, которые в живых системах выступают в виде взаимосвязанных процессов ассимиляции и диссимиляции. Главное достижение синергетики и возникшей на ее основе новой концепции самоорганизации состоит в том, что они помогают взглянуть на природу как на мир, находящийся в процессе непрестанной эволюции и развития.
В каком отношении синергетический подход находится к общесистемному? Прежде всего подчеркнем, что два этих подхода не исключают, а, наоборот, предполагают и дополняют друг друга. Действительно, когда рассматривают множество каких-либо объектов как систему, то обращают внимание на их взаимосвязь, взаимодействие и целостность.
Синергетический подход ориентируется на исследование процессов изменения и развития систем. Он изучает процессы возникновения и формирования новых систем в процессе самоорганизации[11] . Чем сложнее протекают эти процессы в различных системах, тем выше находятся такие системы на эволюционной лестнице. Таким образом, эволюция систем напрямую связана с механизмами самоорганизации. Исследование конкретных механизмов самоорганизации и основанной на ней эволюции составляет задачу конкретных наук. Синергетика же выявляет и формулирует общие принципы самоорганизации любых систем, и в этом отношении она аналогична системному методу, который рассматривает общие принципы функционирования, развития и строения любых систем. В целом же системный подход имеет более общий и широкий характер, поскольку наряду с динамическими, развивающимися системами рассматривает также системы статические.
Эти новые мировоззренческие подходы к исследованию естественно-научной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине мира.
В наибольшей мере изменения в характере конкретного познания коснулись наук, изучающих живую природу. Переход от исследований на клеточном уровне к молекулярному ознаменовался крупнейшими открытиями в биологии, связанными с расшифровкой генетического кода, пересмотром прежних взглядов на эволюцию живых организмов, уточнением старых и появлением новых гипотез происхождения жизни и многого другого. Такой переход стал возможен в результате взаимодействия различных естественных наук, широкого использования в биологии точных методов физики, химии, информатики и вычислительной техники.
В свою очередь, живые системы послужили для химии той природной лабораторией, опыт которой ученые стремились воплотить в своих исследованиях по синтезу сложных соединений. По-видимому, в неменьшей степени учения и принципы биологии оказали свое воздействие на физику. Действительно, как мы покажем в последующих главах, представление о закрытых системах и их эволюции в сторону беспорядка и разрушения находилось в явном противоречии с эволюционной теорией Дарвина, которая доказывала, что в живой природе происходят возникновение новых видов растений и животных, их совершенствование и адаптация к окружающей среде. Это противоречие было разрешено благодаря возникновению неравновесной термодинамики, опирающейся на новые фундаментальные понятия открытых систем и принцип необратимости.
Выдвижение на передний край естествознания биологических проблем, а также особая специфика живых систем дали повод целому ряду ученых заявить о смене лидера современного
11-09-2015, 00:48