Парадокс, по своей природе близок и паралогизму и особенно софизму. Однако, несмотря на их схожесть, все-таки существуют и различия. Как уже говорилось, парадоксом называется странный, неожиданный результат, глубоко расходящийся с общепринятыми представлениями. Но от паралогизма он отличается тем, что выведен логически корректно, с соблюдением норм и правил логики. Различие между парадоксом и софизмом в то, что парадокс – не преднамеренно полученный противоречивый результат.
Впрочем, нужно заметить, что грань между софизмами и парадоксами не является четко определенной. В случаях многих конкретных рассуждений невозможно решить на основе стандартных определений софизма и парадокса, к какому из этих двух классов следует отнести данные рассуждения. Хорошо известный «Парадокс лжеца» был придуман, как софизм, однако в последствие получил статус парадокса, поскольку его противоречивость говорит о какой-то логической ошибке, но в чем она и как её устранить до сих пор остаётся загадкой.
1.2 Классификации парадоксов
Таким образом, парадокс – это противоречие, а не ошибка, его появление нельзя объяснить желанием сознательно исказить положение дел или незнанием какой-то детальной информации. Он коренится глубже и свидетельствует об объективно сложившемся противоречивом состоянии дел.
Первые парадоксы были известны уже в глубокой древности, существуют и современные парадоксы. Некоторые из этих противоречий удалось решить путём создания новых теорий, переосмысления устоявшихся, но несовершенных законов. Другие – так и остались неразрешенными. Считается, что ученые относятся к парадоксам с неприязнью, их называют «патологиями» науки и стремятся как можно скорее от них избавиться. Однако это не всегда удаётся. В настоящее время не существует науки, в которой бы никогда не возникала парадоксов. Их находили в психологии, лингвистики, физике и даже в таких точных науках как логика и математика.
Сейчас сложно подсчитать, как много существует парадоксов: они многочисленны, разнообразны по своей природе и структуре. Поэтому ученые пытаются их структурировать, объединить в какую-либо систему. Вот примеры некоторых классификаций:
Традиционная классификация, идущая от Рамсея (1926), делит парадоксы на логические и семантические. Это классификация проста и удобна, однако М.М. Новосёлов замечает, что рамсеевская классификация парадоксов не делает различия между чистой и прикладной логикой. Однако, это различие существенно, поскольку в чистой логике нельзя обнаружить что-либо парадоксальное, непротиворечивость этих систем доказана. Только в прикладной логике есть гипотезы и предпосылки, которые придают доказательствам относительный (условный) характер и которые, в случае обнаружения противоречий, приходится исключать. Поскольку в данной классификации подобного различия не проводится, все беды, связанные с парадоксами как бы перекладываются на какой-то таинственный противоречивый характер нашего мышления, что даёт возможность недоброжелателям говорить о кризисе в логике.
М.М. Новосёлов предлагает иную классификацию парадоксов, которая, по его мнению, более детально обращает внимание на особенности допущений (и принципов) весьма общего порядка, способных проявиться в основе того или иного парадокса. Данная классификация разделяет парадоксы на:
1) парадоксы, связанные с математической индукцией (парадокс кучи, космологические парадоксы; парадокс Хао-Вана, связанный с неоднозначностью натурального ряда в аксиоматической теории множеств и формализуемостью доказательств непротиворечивости);
2) парадоксы релевантности (т.е. те, в основе которых лежит допущение о возможности игнорировать подробности смысловых связей); с этими парадоксами связаны и парадоксы математической индукции, так как попытки освободиться от этих парадоксов основаны на математической индукции;
3) парадоксы отождествлений (в основе которых лежит допущение о независимости тождества от отождествлений); они также связаны с парадоксами математической индукции и парадоксами актива-пассива;
4) семантические парадоксы (основанные на допущение об осмысленности отношения обозначения);
5) теоретико-множественные парадоксы (сводимые к предыдущим);
6) парадоксы актива-пассива (отождествление происходящего с производимым и т.п.; к ним относятся парадоксы о необходимости начала мира, антиномии Канта); кроме того, из-за парадоксов актива-пассива возникают парадоксы отождествлений, а также следующие группы парадоксов:
7) парадоксы модальностей , которые допускают дальнейшую классификацию: отождествление возможного с действительным, ошибка смещения целей (приводящая к тому, что достаточное считается необходимым и т.п.); пренебрежение условиями возможности (что связано с парадоксами релевантности и приводит к смешению возможности с действительностью); парадокс «утренняя звезда»
8) парадоксы из-за смещения интуитивных понятий с четко определенными (они родственны семантическим парадоксам)[7, С.76-77].
В электронной энциклопедии Wikipedia приводится следующая классификация парадоксов:
I . Логические:
- парадокс импликации: несовместные посылки делают аргумент верным;
- парадокс воронов (или Во́роны Хемпеля): существование красного яблока увеличивает вероятность того, что все во́роны чёрные;
- парадокс неожиданной казни: если сказать осуждённому на казнь, что она произойдёт в неожиданный для него день этой недели, то он логически придёт к выводу, что она не может произойти ни в один из дней недели. Тогда она и будет сюрпризом;
- парадокс пьяницы: в любом непустом заведении всегда существует человек такой, что если он пьёт, то пьют и все остальные посетители;
- парадокс лотереи: вполне ожидаемо (и философски проверяемо), что данный конкретный билет не выиграет, но нельзя ожидать, что никакой билет не выиграет.
II . Парадоксы самореференции (самоотносимости):
Это хорошо известный (и хорошо изученный) класс противоречий, возникающий из-за ссылки на само себя.
- парадокс Берри: фраза «наименьшее число, которое нельзя описать менее, чем десятью словами» описывает это число девятью словами;
- парадокс Эпименида: Критянин говорит: «Все критяне - лжецы»;
- парадокс исключений: «Если у каждого правила есть исключения, то каждое правило должно иметь хотя бы одно исключение, кроме этого» …а это не исключение к правилу, которое утверждает, что у каждого правила есть исключения?
- парадокс Греллинга-Нельсона: является ли слово «гетерологичный», означающее «неприменимый к самому себе», гетерологичным словом?
- парадокс Петрония: «Ограничивайте себя во всех вещах, даже в ограничении»;
- парадокс Квина: «…влечёт за собой ложность, будучи добавленным к собственному цитированию» влечёт за собой ложность, будучи добавленным к собственному цитированию;
- парадокс Эватла (софизм Эватла): Протагор взял ученика Эватла при условии, что тот ему заплатит, когда выиграет первое дело. Случилось так, что Протагор подал иск на Эватла за то, что тот ему долго не платит. Должен ли Эватл заплатить, если он выиграет это дело (хотя выигрыш означает, что Эватл ничего не должен Протагору)?
- парадокс Рассела: Содержит ли множество всех таких множеств, которые не содержат себя, самого себя? Рассел популяризовал его в форме парадокса брадобрея: «Брадобрей бреет всех людей, которые не бреются сами. Бреет ли он себя?»
III . Неопределённые:
- парадокс Корабля Тесея: если каждый элемент корабля был заменён хотя бы один раз, можно ли считать корабль прежним кораблём?
- парадокс кучи: в какой момент куча перестанет быть кучей, если отнимать от неё по одной песчинке? Или, в какой конкретно день какой-либо человек становится лысым?
IV . Математические и статистические: http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5:Monty_open_door.svghttp://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5:Monty_open_door.svg
- парадокс интересных чисел: первое неинтересное число интересно само по себе этим фактом. Поэтому неинтересных чисел не существует;
- парадокс Линдли: маленькие ошибки в нулевой гипотезе сильно возрастают, если анализируются большие массивы данных, приводя к ложным, но одновременно точным со статистической точки зрения результатам;
- парадокс недоношенности: низкий вес при рождении и курение матери приводят к большой смертности. Дети курящих родителей имеют более низкий вес при рождении, однако маловесящие дети курящих родителей имеют более низкую смертность, чем другие маловесящие дети;
- парадокс Уилла Роджерса: математическое понятие среднего, определённое как среднее арифметическое, или как медиана - неважно, приводит к парадоксальному результату - например, возможно переместить статью из Википедия в Викицитатник так, чтобы средняя длина статьи увеличилась на обоих сайтах!
- парадокс маляра: бесконечную по площади пластинку можно окрасить конечным количеством краски.
V . Вероятностные:
- парадокс Берксона: два независимых события становятся условно зависимыми при условии, что хотя бы одно из них произошло;
- парадокс пари: в некоторых ситуациях выгодно спорить обоим противникам, ибо оба имеют бо́льшие шансы на победу, чем на проигрыш;
- парадокс определения: невозможно дать определение определению, ибо пока мы не дали это определение, сам о понятие определения остается неизвестным;
VI .Связанные с бесконечностью:
- парадокс Гильберта: Если гостиница с бесконечным количеством номеров полностью заполнена, в неё можно поселить ещё посетителей, даже бесконечное число;
- парадокс Интернета: Вероятность существования нужной информации в Интернете возрастает, а возможность её найти уменьшается.
VII .Геометрические или топологические: http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5:Tarski.pnghttp://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5:Tarski.png
- парадокс Банаха - Тарского: шар может быть разложен на несколько частей, из которых потом можно сложить два точно таких же шара.http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5:MorinSurfaceFromTheTop.PNG
VIII . Связанные с выбором:
- парадокс Абилина: Бывает, что люди принимают решения основанные не на том, что они сами хотят, но на том, что они думают, что другие хотят. В результате получается, что каждый делает что-то, что никому на самом деле не нужно;
- парадокс контроля: человек не может быть свободен от контроля, ибо чтобы быть свободным от контроля, нужно контролировать себя;
IX . Химические:
- парадокс Левинталя: промежуток времени, за который протеиновая цепочка приходит к своему скрученному состоянию, на много порядков меньше, чем оно могло бы быть, если она просто перебирала все возможные конфигурации.
X . Физические:
- парадокс Архимеда: огромный корабль может плавать в нескольких литрах воды;
- кот Шрёдингера. Квантовый парадокс: кот жив или мёртв перед тем, как мы на него посмотрим?
- парадокс близнецов: Когда близнец-путешественник вернулся, он стал моложе или старше, чем его брат, который оставался на Земле?
- парадокс Мпембы: горячая вода (при некоторых условиях) может замёрзнуть быстрее, чем холодная, хотя при этом она должна пройти температуру холодной воды в процессе замерзания;
- фотометрический парадокс: Почему ночное небо - чёрное, хотя в нём бесконечное число звёзд?
XI . Связанные с путешествиями во времени:
- парадокс дедушки: вы перемещаетесь в прошлое и убиваете своего дедушку до того, как он познакомился с Вашей бабушкой. Из-за этого Вы не сможете появиться на свет и, следовательно, не сможете убить своего дедушку;
- парадокс предопределения: человек попадает в прошлое, имеет половую связь со своей прабабушкой и зачинает своего дедушку. В результате получается череда потомков, включая родителя этого человека и его самого. Следовательно, если бы он не путешествовал в прошлое, его бы вообще не существовало.
XII . Философские:
- тотальная казнь, или парадокс смертной казни: убийство в некоторых странах карается смертной казнью, но, совершая её, государство (то есть все его жители) становятся убийцами и должны быть приговорены к смерти;
- парадокс эпикурейцев, или Проблема зла (англ.): кажется, что существование зла несовместимо с существованием всемогущего и заботливого Бога;
- аддитивность счастья: что лучше: большая группа людей, живущая сносной жизнью, или небольшая, живущая счастливо?
- парадокс всемогущества: может ли всемогущее существо создать камень, который оно само не сможет поднять?
- парадокс гедонизма: когда человек занимается только своим счастьем, он несчастен; но, занимаясь другими вещами, он может быть счастливым;
XIII . Экономические:
- парадокс ценности: почему вода стоит дешевле алмазов, хотя потребность человека в ней гораздо больше, чем в алмазах?
- парадокс Элсберга: Люди предпочитают известный, хотя и бо́льший, риск неизвестному риску, что противоречит теории ожидаемой пользы;
- парадокс Паррондо: возможно выиграть, играя поочерёдно в две заведомо проигрышные игры; [16]
Таким образом, можно утверждать, что в настоящий момент существует немало классификаций парадоксов и ни одну из них нельзя назвать совершенной. Попытаться классифицировать, упорядочить парадоксы – это как попытаться объять необъятное. Парадоксы существуют повсюду, они неотъемлемая часть любой науки. Разнообразие и разноаспектность наук и объясняет разнородность парадоксов, которая служит помехой для создания точной и общепринятой классификации.
В настоящей работе не ставилась задача рассмотреть все парадоксы во всем их разнообразии, здесь лишь делается попытка описать наиболее общие, известные и «образцовые» (прототипические) парадоксы. Поэтому в данном реферате мы будем придерживаться очень простой классификации: разделим парадоксы на логические и парадоксы, существующие в других науках (физические, математические). Несмотря на явное упрощение, именно такое разделение представляется наиболее подходящим и оправданным целями данной работы.
2. Парадоксы в науке
Наука – это сложное явление общественной жизни; её основным назначением является получение объективных знаний о мире. Наука – это многоаспектное явление. Её можно рассматривать как социальный институт, как определенную социальную общность или как социально-культурный феномен, как порождение определённого типа общества, как продукт человеческой истории, как фактор общественной жизни. Но всё же центральным аспектом её изучения является рассмотрение её как системы знания особого рода.
Научное знание обладает определёнными особенностями. Основным требованием к научному знанию является требование его истинности. В современной методологии науки выявлено, что требование истинности является скорее идеалом, методологическим регулятивном познания, нежели реально достижимой целью. Поэтому традиционно при исследовании научного знания выделяют те его характеристики, которые должны быть присущи каждой научной теории. К ним относится предметность, проблемность, обоснованность, интерсубъективность, системность и непротиворечивость [14, С.239].
Требование непротиворечивости нашего знания является центральным в научном мышлении и обычно строго выполняется. При возникновении противоречия в том или ином процессе познания или составе некоторого знания ученые всегда стремятся устранить его. Вместе с тем появление противоречий в процессе познания отнюдь не редкое явление. Почти в каждой более или менее сложной науке возникают так называемые парадоксы или антиномии – противоречия определенных видов [3, С.31]. Как говорил А.В. Сухотин: «Беспарадоксальных наук в настоящее время не существует. Фактически наука и движется от парадокса к парадоксу. Это вехи, которыми обозначены ее взлеты. Но и падения тоже, поскольку выявление парадокса воспринимается вначале как наступление катастрофы, как развал искусно построенного здания» [9].
Наиболее ярки и заметны парадоксы в точных науках – логике и математике. Появление парадоксов в данных науках парадоксально. Логика и математика – науки точные, не терпящие никаких противоречий вообще, не говоря уже о «неразрешимых противоречиях». Именно поэтому парадоксы, возникающие в этих науках, являются наиболее интересными и требуют более детального рассмотрения.
2.1 Парадоксы в логике
Логический парадокс – это положение, которое сначала ещё не является очевидным, однако, вопреки ожиданиям, выражает истину. В античной логике парадоксом называли утверждение, многозначность которого относится, прежде всего, к его правильности или неправильности [13, С.332-333].
Логические парадоксы пользуются особой известностью, и это не случайно. Дело в том, что логика – это абстрактная наука. В ней нет экспериментов, нет даже фактов в обычном смысле этого слова. Строя свои системы, логика исходит, в конечном счете, из анализа реального мышления. Но результаты этого анализа носят синтетический, нерасчлененный характер. Они не являются констатациями каких-либо отдельных процессов или событий, которая должна была бы объяснить теория.
Констатируя новую теорию, ученый обычно отправляется от фактов, от того, что можно наблюдать на опыте. Но в логике, как уже говорилось, нет экспериментов, нет фактов и нет самого наблюдения. Поэтому возникает вопрос: что в таком случае принимается во внимание при создании новых логических теорий? А.А. Ивин пишет по этому поводу: «Расхождение логической теории с практикой действительного мышления нередко обнаруживается в форме более или менее острого логического парадокса, а иногда даже в форме логической антиномии (это наиболее резкая форма парадокса – рассуждение, доказывающее эквивалентность двух утверждений, одно из которых является отрицанием другого). Парадоксы и антиномии говорят о внутренней противоречивости теории. Именно этим объясняется то значение, которое придаётся парадоксам в логике, и то большое внимание, которым они в ней пользуются» [5, С.309-310].
Рассмотрим некоторые из наиболее известных логических парадоксов.
Королем логических парадоксов по праву считается парадокс «Лжец». Автором этого парадокса считается Евбулид из Милета. В его формулировке данный парадокс звучит следующим образом:
Критянин Эпименид сказал: «Все критяне лжецы». Эпименид сам критянин. Следовательно, он лжец.
Далее начинаются логические рассуждения: «Если Эпименид лгун, тогда его заявление, что все критяне лгуны – ложно. Значит, критяне не лгуны. Между тем Эпименид, как определено условием, – критянин, следовательно, он не лгун, и поэтому его утверждение «все критяне лгуны» – истинно. Таким образом, получаются взаимоисключающие предложения. Одно из них утверждает, что высказывание «все критяне лгуны», является ложным, а другое, наоборот, квалифицирует это же высказывание как истинное. Притом как в одном, так и в другом случае используемые рассуждения логически строги, в них нет ни намеренных, ни непреднамеренных ошибок. Так где же истина?
Было приложено немало усилий объяснить этот странный результат. Имеется, например, такое решение. Почему мы должны считать, что Эпименид говорит одну только ложь
10-09-2015, 23:23