Экономико-математические методы анализа

Ф(t ) – номинальная цена будущего потока реальных денег в году t и Ф(0) – цена этого ожидаемого притока или оттока в настоящее время (текущая цена). Тогда (предполагая, что р – постоянная величина)

.

Смысл проведения расчетов методом дисконтирования состоит в том, чтобы определить сумму, которую следует заплатить сегодня с тем, чтобы получить планируемую отдачу от инвестиций в будущем.

Для применения метода дисконтирования об объекте инвестирования необходимо знать следующие исходные данные: величиной инвестиции, планируемые величины денежных потоков или чистого дохода, норма дисконтирования, срок проекта.

При расчете денежных притоков и оттоков (кеш-фло) учитывается не только поступления денежных средств от операционной и инвестиционной деятельности, но и потоки от финансовых результатов.

Чистый поток наличности (ЧПН) определяется как разность между притоками и оттоками наличности от операционной (производственной) и инвестиционной деятельности минус издержки по финансированию проекта.

Чистый дисконтированный доход (ЧДД) определяется как сумма ЧПН за расчетный период.

Пример расчета куммулятивного ЧДД приведен в приложении 1. Здесь куммулятивный чистый поток реальных денег (строка 9) рассчитывается сложением куммулятивного чистого потока реальных денег за предыдущий период и чистого потока реальных денег за отчетный год. Например, куммулятивный чистый поток реальных денег в 2002 (5-м) году равен – 8300 млн. руб. (-10000 + 1700). ЧДД (строка 10)рассчитывается по формуле ЧД = строка 8 /, где n – год с момента инвестирования, за который рассчитывается ЧДД. Куммулятивный ЧДД (строка 11) рассчитывается так же, как и куммулятивный чистый поток реальных денег.

Коэффициент дисконтирования для приведения чистых денежных потоков к начальному периоду определяется по формуле

где Д – ставка дисконтирования (норма дисконта); t – год, за который дисконтируется чистый доход, начиная с момента инвестирования.

Значение коэффициентов дисконтирования можно также получить из специальных таблиц дисконтированных величин.

Норма дисконта отражать прибыль инвестора, которую он мог бы получить при инвестициях в другой проект. Она является минимальной нормой прибыли, ниже которой инвестор счел бы свои вложения не выгодными.

ЧДД характеризует интегральный эффект от реализации проекта и определяется как величина, полученная дисконтированием разницы между всеми готовыми оттоками и притоками реальных денег, накапливаемых в течении горизонта расчета проекта Т (при постоянной ставке процента отдельно для каждого года):

,

где – чистые потоки наличности в годы t = 1,2,3,…,T.

Формулу для расчета ЧДД можно представить в следующем виде:

ЧДД = П(0) + П(1) ∙ К1 + П(2) ∙ К2 + … + П(Т) ∙ Кt .

Чистый дисконтированный доход как критерий для оценки эффективности инвестиций достаточно корректен и экономически обоснован. Во-первых, ЧДД учитывает изменение стоимости денег во времени. Во-вторых, ЧДД зависит только от прогнозируемого чистого денежного потока и альтернативной стоимости капитала. В-третьих, ЧДД имеет свойство аддитивности, т. е. ЧДД нескольких инвестиционных проектов можно складывать, так как все они выражены в сегодняшних деньгах.

ОПТИМИЗАЦИОННЫЕ МЕТОДЫ АНАЛИЗА И ПРИНЯТИЯ РЕШЕНИЯ В ЭКОНОМИКЕ.

Многие задачи, с которыми приходится сталкивается экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.

В современных условиях даже не значительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяют в одну группу под общим названием «оптимизационные методы анализа и принятия решения в экономике».

Чтобы решить экономическую задачу математическими методами, прежде всего необходимо построить адекватную ей математическую модель, т.е. формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.

В общем случае математическая модель оптимизационной задачи имеет вид:

max ( min ) : Z = Z ( x ) (1.1.)

при ограничениях

, (1.2)

где R – отношения равенства, меньше или больше.

Если целевая функция (1.1) и функции, входящие в систему ограничений (1.2.), линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция (1.1.) или система ог­раничений (1.2.) не линейна, такая задача называется задачей линейного программирования.

В основном, на практике, задачи нелинейного программиро­вания путем линеаризации сводятся к задаче линейного про­граммирования. Особый практический интерес среди задач линейного программирования представляют задачи динами­ческого программирования, которые из-за своей многоэтапнос­ти нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых в настоящее время имеется хорошее математическое и программное обеспе­чение.

Модели и методы решения задачи линейного программирования. Среди оптимизационных моделей и методов, исполь­зуемых в теории экономического анализа, наиболее широкое распространение получили модели линейного программирова­ния, которые решаются с помощью универсального приема ­ –симплексного метода. Для современных ПЭВМ имеется ряд па­кетов прикладных программ, которые позволяют решать любые задачи линейного программирования достаточно большой раз­мерности. Одновременно с решением исходной задачи указан­ные пакеты прикладных программ могут решать двойственную задачу, решение которой позволяет проводить полный экономи­ческий анализ результатов решения исходной задачи.

Решение задачи линейного программирования на ПЭВМ рас­смотрим на примере задачи об оптимальном раскрое материалов. По результатам решения проведем полный экономико-матема­тический анализ с использованием теории двойственности.

Пусть имеется 200 кг полотна шириной 86 см и 300 кг - ши­риной 89 см. Из него необходимо раскроить и сшить мужские куртки 44, 46, 52 и 54 размеров. Они должны быть изготовлены

в следующем соотношении к размерам: 44 - 25,38%; 46 ­27,88%; 52 - 24,54%; 54 - 25,54%. Итого - 100%.

Общий расход полотна, а также отходы, получаемые при рас­

крое полотна, приведены в табл. 1.12 и 1.13.

Количество курток, которые выпускало предприятие в тече­ние месяца, показано в табл. 1.14.

Необходимо определить насколько рациональным оказался раскрой, а также какие размеры изделий целесообразнее раскра­ивать из полотна указанной ширины, чтобы сократить отходы.

Ширина полотна, см.

Размер курток

44

46

52

54

86

Табл. 1.12. Нормативный расход полотна на единицу изделия, г.

89

520,27

576,42

553,5

593,49

597,4

627,2

605,6

647,77

Ширина полотна, см.

Размер курток

44

46

52

54

86

Табл. 1.13. Отходы, получаемые при раскрое полотна на единицуизделия, г.

89

66,27

94,45

75,5

97,49

78,4

105,7

85,6

109,7

Размер курток

Ширина полотна, см.

86

89

44

46

52

80

110

96

134

125

108

Размер курток

Ширина полотна, см.

86

89

44

46

52

80

110

96

134

125

108

Табл. 1.15. Условные обозначения

Табл. 1.14. Количество курток, сшитых в течение месяца, шт.

Решим данную задачу на ПЭВМ с использованием, например, инструментальных средств МВ Excel и сделаем экономический анализ полученного решения. Как правило, решение конкретной задачи на ПЭВМ включает в себя следующие этапы:

· составление математической модели;

· присвоение элементам модели определенных «имен»;

· составление матричной модели с поименованными элемен­тами;

· ввод и корректировка исходных данных;

· решение задачи на ПЭВМ;

· экономический анализ полученного решения.

Применительно к нашему примеру на первом этапе вводим условные обозначения, необходимые для решения задачи (Табл. 1.15.).

Здесь х 1, х 2, х 3, х 4, х 5, х 6, х 7, х 8, обозначают соответственно количество изделий (штук) определенного размера, раскроенных из полотна шириной 86 и 89 см. Умножив количество изделий на нормы отхода, получим общую величину отходов производ­ства. Они должны быть минимальны. Тогда целевая функция имеет вид:

min: F(x) = 66,27 х 1 + 75.5х 2 + 78.4х 3 + 95.6х 4 +

+ 94.2х 5 + 97.49х 6 + 105.7х 7 + 108.77х 8.

Задача состоит в нахождении таких х j (j = ), при которых целевая функция (1.1) достигнет минимума и выполняются сле­дующие условия:

520,27х 1 + 553,5х 2 + 597,4х 3 + 605,4х 4 = 200000;

526,42х 5 + 553,49х 6 + 627,7х 7 + 647,77х 8 = 300000;

х 1 + х 2 + х 3 + х 4 + х 5 + х 6 + х 7 + х 8 - х 9 = 0;

х 1 + х 5 – 0,2538х 9 = 0;

х 2 +х 6 – 0,2788х 9 = 0;

х 3 + х 7 – 0,2420х 9 = 0

х 4 + х 8 – 0,2254х 9 = 0;

.

Здесь х9 – суммарный выпуск курток. Тогда условия (1.4) и (1.5) означают, что полотна шириной 86 см должно быть из­расходовано 200 кг, а полотна шириной 89 см - 300 кг; (1.6)­ – условие суммарного выпуска изделий; условия (1.7) – (1.10) означают сбалансированность раскроя изделий по соответствую­щим размерам; (1.11) – условие неотрицательности объемов производства.

На втором этапе каждой переменной, ограничениям, целе­вой функции и вектору ограничений (коэффициенты свободных членов) присваиваются «имена», которые должны включать не более восьми символов. Удобно, чтобы имена были информатив­ными, так как при этом облегчается использование выходных отчетов.

Элементы модели и присваиваемые им имена:

Переменная

х1

х2

х3

х4

х5

х6

х7

х8

х9

Целевая функция (1.3)

Ограничения по ресурсам:

полотна шириной 86 см. (1.4)

полотна шириной 89 см. (1.5)

Общий объем производства (1.6)

Ограничения по выпуску:

курток размера 44 (1.7)

курток размера 46 (4.8)

курток размера 52(1.9)

курток размера 54 (4.10)

Вектор ограничений

(200000, 300000, 0, 0, 0, 0, 0)

«Имя»

ПР1

ПР2

ПР3

ПР4

ПР5

ПР6

ПР7

ПР8

ПР9

Отходы

Полотно 1

Полотно 2

Выпуск

Размер 44

Размер 46

Размер 52

Размер 54

Ресурсы

На третьем этапе составляем матричную модель с имено­ванными элементами модели (Приложение 2). .

На четвертом этапе введем исходные данные в ПЭВМ. При этом ввод осуществляется в соответствии с инструкцией к име­ющемуся пакету прикладных программ.

При завершении ввода исходной информации возможна ее распечатка для визуального контроля. По результатам контро­ля производится корректировка исходной информации и пере­ход на режим расчета.

Пятый этап. Решение задачи Возможно в двух режимах: решение прямой задачи; решение прямой и двойственной задач. При этом решение можно производить поэтапно, с выдачей проме­жуточных результатов алгоритма симплекс-метода, по которым можно судить о качественном процессе поиска оптимального ре­шения. По завершении результатов расчета устанавливается ре­жим распечатки (как прямой задачи, так и двойственной).

Так, в режиме расчета прямой задачи получим следующее решение, предварительно округлив результаты до целых:

ПР 1 = 150; ПР 2 = о; ПР 3 = 204; ПР 4 = о; ПР 5 = 64; ПР 6 = 235; ПР 7 = о; ПР 8 = 190; ПР 9 = 843.

Отходы = 75 743; Полотно 1 = 200 000; Полотно 2 300 = 000.

Следовательно, необходимо раскроить из полотна шириной 86 см 150 курток 44 размера и 204 куртки 52 размера, а из полот­на шириной 89 см - 64 куртки 44 размера, 235 курток 46 раз­мера и 190 курток 54 размера. Общий объем производства соста­вит 843 куртки. Суммарные отходы при таком варианте раскроя составят 75743 г, а ресурсы будут использованы полностью.

В режиме решения двойственной задачи получим значения двойственных оценок ресурсов:

Полотно 1 = 0,12996 Полотно 2 = 0,16616

Как видим, двойственные оценки объемов ресурсов отличны от нуля, следовательно, они «дефицитны». Их абсолютная ве­личина говорит о том, что увеличение объема ресурса на едини­цу приводит к качественному изменению целевой функции (1.1) на величину этой оценки. Следовательно, оценки можно счи­тать количественной мерой дефицита ресурсов: чем больше оценка, тем к большему эффекту приводит увеличение объема использования данного ресурса.

Одновременно с этим получим двойственные оценки произ­водимой продукции:

ПР 1 = о; ПР 2 = 4,70818; ПР 3 = о; ПР 4 = 4; ПР 5 = о; ПР 6 = о; ПР 7 = 0,73815; ПР 8 = о.

Здесь двойственные оценки ПР 2, ПР 4, ПР 7 принимают ну­левые значения. Абсолютные значения этих оценок говорят о том, что если мы все же будем раскраивать соответствующие изделия, потери от отходов будут только увеличиваться на ве­личину оценки от раскроя одной единицы изделия. Следова­тельно, раскраивать куртки 46 и 54 размеров из полотна 86 см нецелесообразно, точно так же как и куртки 52 размера - из по­лотна шириной 89 см.

Теперь сопоставим нормативные отходы при традиционном ва­рианте раскроя с отходами при оптимальном варианте (табл. 1.16).




8-09-2015, 12:48
Страницы: 1 2 3 4
Разделы сайта






Размеры

Отходы на ед.

по норме ,г.

Фактический

выход изделий,

шт.

Отходы при

фактич. выпуске,

(гр.2*гр.3), г.

Оптимальный

выход изделий,

шт.

Отходы при

оптим. выпуске

(гр.2*гр.3), г.

Отклонения

количество,

шт.

отходы, г.

1

2

3

4

5

6

7

8

Ширина полотна 86 см

44

46

52

54

44

66,27

75,5

78,4

85,6

94,45

80

110

96

66

134

5301,6

8305,0

7526,4

5649,6

12649,6

150

0

204

0

64

9940,5

0

15993,6

0

604288

+70

+110

+108

-66

-70

+4638,9

8305,0

+8467,2

5649,6

-66,0672

Ширина полотна 89 см

46

52

54

97,49

105,7

109,77

134

108

124

12186,25

11415,6

13611,48

235

0

190

22910,15

0

20856,42

+110

-108

+66

+10723,9

-11415,6

+7244,82

Всего

843

76645,53

843