Оптимизация процессов бурения скважин

0,9

6,385729

7

4,2

0,0001

8

3,9

0,223729

8

4,3

0,0081

9

4,2

0,597529

9

4,4

0,0361

10

4,1

0,452929

11

4,0

0,328329

Среднее значение

3,427

15,401819

Среднее значение

4,21

0,9889

Дисперсия

1,5401819

Дисперсия

0,1236125

20.расчет дисперсии


21. Расчёт среднеквадратичной величины

22. Расчёт коэффициента вариации

23. Определение размаха варьирования

24. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке №1 и №2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.


25. Расчёт средней величины

Выборка №1

Выборка №2

1

3,5

0,0324

1

4,0

0,01265625

2

4,1

0,1764

2

4,2

0,00765625

3

4,0

0,1024

3

4,1

0,00015625

4

4,2

0,2704

4

3,9

0,04515625

5

3,8

0,0144

5

3,8

0,09765625

6

1,0

7,1824

6

4,2

0,00765625

7

3,9

0,0484

7

4,3

0,03515625

8

4,2

0,2704

8

4,4

0,08265625

9

4,1

0,1764

10

4,0

0,1024

Среднее значение

3,68

8,376

Среднее значение

4,1125

0,28875625

Дисперсия

0,93

Дисперсия

0,04

26. Расчёт дисперсии

27. Расчёт среднеквадратичной величины.

28. Расчёт коэффициента вариации

29. Определение размаха варьирования.

30. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

В выборке №1 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому подлежит отбраковки. Теперь пересчитаем среднюю величину для выборки №1.

31.Расчёт средней величины.

Выборка №1

Выборка №2

1

3,5

0,2282716

1

4,0

0,01265625

2

4,1

0,0149382

2

4,2

0,00765625

3

4,0

0,0004938

3

4,1

0,00015625

4

4,2

0,0493827

4

3,9

0,04515625

5

3,8

0,0316049

5

3,8

0,09765625

6

3,9

0,0060494

6

4,2

0,00765625

7

4,2

0,0493827

7

4,3

0,03515625

8

4,1

0,0149382

8

4,4

0,08265625

9

4,0

0,0004938

Среднее значение

3,97

0,395555

Среднее значение

4,1125

0,28875625

Дисперсия

0,049

Дисперсия

0,04

32.Расчёт дисперсии.


33. Расчёт среднеквадратичной величины.

34. Расчёт коэффициента вариации.

35. Определение размаха варьирования.

36. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

В выборке №1 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому подлежит отбраковки. Теперь пересчитаем среднюю величину для выборки №1.

37. Расчёт средней величины.

Выборка №1

Выборка №2

1

4,1

1

4,0

0,01265625

2

4,0

2

4,2

0,00765625

3

4,2

3

4,1

0,00015625

4

3,8

4

3,9

0,04515625

5

3,9

5

3,8

0,09765625

6

4,2

6

4,2

0,00765625

7

4,1

7

4,3

0,03515625

8

4,0

8

4,4

0,08265625

Среднее значение

4,0375

Среднее значение

4,1125

0,28875625

Дисперсия

Дисперсия

0,04

38. Расчёт дисперсии.


39. Расчёт среднеквадратичной величины.

40. Расчёт коэффициента вариации.

41. Определение размаха варьирования.

42. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

43. Определение предельной относительной ошибки испытаний.

Выборка №1

Выборка №2

44. Проверка согласуемости экспериментальных данных с нормальным законом распределения при помощи критерия Пирсона.

Интервал

Среднее значение

Частота

1

3,8 – 3,9

3,85

1

2

3,9 – 4,0

3,95

3

3

4,0 – 4,1

4,05

2

4

4,1 – 4,2

4,15

2

Выборка №1 Определим количество интервалов:

где - размер выборки 1


1. Сравнение с теоретической кривой.

- параметр функции

где

- среднее значение на интервале;

2. Рассчитываем для каждого интервала

- функция плотности вероятности нормально распределения;

3. Расчёт теоретической частоты.

- теоретическая частота в i-том интервале.

1

3,85

1

-1,332

0,1647

0,9364

0,0040

0,004

2

3,95

3

-0,622

0,3292

1,8717

1,2730

0,680

3

4,05

2

0,088

0,3977

2,2612

0,0682

0,030

4

4,15

2

0,799

0,2920

1,6603

0,3397

0,204

Число подчиняется - закону Пирсона

- число степеней свободы;

- порог чувствительности;

- вероятность;

Если , то данные эксперимента согласуются с нормальным законом распределения, где - табличное значение критерия Пирсона.

Если - данные эксперимента не согласуются с нормальным законом распределения, необходимо дальнейшее проведение опытов. Поскольку вычисленное значение () превосходит табличное значение критерия Пирсона, то данные эксперимента не согласуются с нормальным законом распределения.

Выборка №2

Определим количество интервалов:

, где - размер выборки 2

Интервал

Среднее значение

Частота

1

3,8 – 3,95

3,875

2

2

3,95 – 4,10

4,025

2

3

4,10– 4,25

4,175

3

4

4,25 – 4,4

4,325

2

1. Сравнение с теоретической кривой.

- параметр функции , где

- среднее значение на интервале;

2. Рассчитываем для каждого интервала

- функция плотности вероятности нормально распределения;

3. Расчёт теоретической частоты.

- теоретическая частота в i-том интервале.

1

3,88




29-04-2015, 00:58
Страницы: 1 2 3
Разделы сайта