Пример 5. За исходные примем данные в примере Курбанова-Садчикова [90]: R0=200m; h=10м; Δр1=700кг/м3; Δр2=300кг/м3; μн=2мПас; Кr=0,5 • 1,02 • 10-12 м2; æ*=5; b-а=2м; d=3,9м (см.рис.2.7).
Из условия задачи имеем численные значения параметров α≈0,3; β≈0,5 и р0=4. По таблице (см.Прил.З) определяем безразмерные плотности расходов: q1≈0,213 и q2≈0,557. Удельные расходы составляют: q01 ≈0,149εh и q02≈0,167εh. Подсчитывая предельный дебит по формуле (2.24) по наименьшему удельному расходу q01, получаем Q≈6,1м3/сут.
По расчетам авторов [7,8] этот дебит равен Q4,33м3/сут, т.е. отклонение составляет порядка 40%. Такое расхождение, очевидно, объясняется тем, что авторы при решении задачи делают допущение, что нейтральная линия тока проходит через середину интервала вскрытия (см.рис.2.6 и 2.7) при любом его положении, тогда как уточненная методика определяет положение нейтральной линии тока ξ* в зависимости от положения интервала вскрытия α и β. Заметим, что в своей предпосылке при решении задачи несовершенная скважина считалась линией стоков с постоянным удельным расходом. В действительности на скважине должен быть постоянным потенциал. Физически ясно, что картины линий тока будут отличаться несущественно, а, следовательно, положения горизонтальных линий тока будут близки друг к другу [3].
Метод Курбанова-Садчикова и предлагаемый уточненный метод решения задачи конусообразования имеют следующие преимущества перед потенциометрическим и другими существующими методами: они универсальны, т.е. расчетные зависимости представлены в безразмерном виде и применимы как для однородных, так и для однородно-анизотропных пластов; графические решения даны в широком диапазоне безразмерных параметров вскрытия (α,β) и радиуса контура питания (R0) и охватывают все практически интересные случаи; технически удобны и просты, не требуют сложной вычислительной техники.
Заключение
Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или полностью подошвенными водами или оконтуриваются краевыми водами или имеет место то и другое одновременно. Рациональная разработка указанных месторождений невозможна без знания особенностей и закономерностей продвижения границ раздела газ-вода, нефть-вода и газ-нефть к несовершенным скважинам. Как показывают промышленные испытания и анализы разработки залежей с верхним газом и подошвенной водой, конусообразование является, в ряде случаев, основной причиной обводнения или загазовывания нефтяных скважин, пробуренных в литологи-чески однородных пластах. Преждевременное обводнение или загазовыва-ние скважин, незнание закономерностей и причин этого явления ведет к потерям большой доли промышленных запасов нефти и, таким образом, снижению нефтеотдачи пласта, увеличению сроков разработки и в конечном итоге к большим материальным затратам на извлечение нефти из пласта. Отсюда тщательное изучение процессов продвижения подошвенных вод и верхнего газа, сложного явления деформации поверхности раздела фаз в пористой среде (конусообразования), особенностей и закономерностей обводнения пластов и скважин, совместного притока жидкостей к забою скважины и изучение природных факторов, способствующих увеличению безводного и безгазового периодов эксплуатации и улучшению технологических условий разработки залежей с целью наибольшего извлечения нефти из пласта, одна из основных задач увеличения нефтеотдачи на современном этапе.
Список используемой литературы
1.Маскет М. Течение однородных жидкостей в пористой среде (пер. с англ.).-М.: Гостоптехиздат, 1949.
2.Чарный И.А. Подземная газогидродинамика. -М: Гостоптехиздат, 1963.
З.Телков А.П., Стклянин Ю.И. Образование конусов воды при добыче нефти и газа.-М..Недра, 1965..
5.Телков А.П. Некоторые особенности эксплуатации нефтяных залежей с подошвенной водой. -НТО.М: ВНИИОЭНГ, 1972. - 136с.
6.Курбанов A.K., Садчиков П.Б. Расчет положения интервала вскрытия в нефтяном пласте с подошвенной водой и газовой шапкой// Тр.ВНИИ, 1962.- Вып.37. - С.29-40.
7. Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений/Под ред. Ш.К.Гиматудинова. - М: Недра, 1983.
8.Телков А.П., Стклянин Ю.И. Расчет предельных безводных и безгазовых дебитов в подгазовых нефтяных залежах с подошвенной водой// Тр.МИНГиГП,1963. -Вып.42.
9.Стклянин Ю.И., Телков А.П. Расчет предельных безводных дебитов в однородно-анизотропных пластах с осевой симметрией // Изв. АН СССР, 1961-№5.
10.П.Краснова Т.Л. Особенности притока нефти к несовершенным скважинам в нефтегазовых залежах с подошвенной водой// Новые технологии в разработке и эксплуатации нефтяных и газовых месторождений. Сб.науч.тр. - Тюмень: ТюмГНГУ, 1997.
11.Краснова Т.Л. Уточненная методика расчета предельных одновременно безводных и безгазовых дебитов и депрессий// Новые технологии в разработке и эксплуатации нефтяных и газовых месторождений. Сб.науч.тр. - Тюмень. ТюмГНГУ, 1997.
12.Краснова Т.Л, Телков А.П. Обоснование технологических режимов работы несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой//Нефтепромысловое дело - 1997. - № 4-5. - С.2.
13. Телков А.П., Федорцов В.К. Приток к несовершенной скважине и выбор плотности перфорации// Управление гидродинамическими процессами при разведке и эксплуатации месторождений нефти/ Тр.ЗапСибНИГНИ. - Тюмень, 1986. - С.61-68.
29-04-2015, 00:29