, (45)
где z – перепад уровней. z = Н0
Однако в случае водосброса с полигональным входным оголовком значение σ принимается равным 1.
Н0 – напор над оголовком водослива с учётом скорости подхода:
, (46)
В данной формуле величину для предварительных расчётов можно принять равной 2% от , т.е. .
.
Далее определяем периметр входного оголовка водослива:
.
Принимаем 5 граней: 4 шириной по 7 м, и одна – 3.5 м.
2.2.2 Расчёт водопропускной части водослива
1) Начнём расчёт водопропускной части водослива с определения ширины водопропускного тракта на пропуск расхода, который вошёл в оголовок водослива.
Задаём предварительно .
Перепад уровней во входном оголовке определяется по зависимости
, (47)
где - критическая глубина потока во входном оголовке
, (48)
где - коэффициент Кориолиса .
.
Подставляя значения в формулу (47), определяем перепад уровней
.
2) Рассчитаем глубину воды на входе в водопропускной тракт водосбросного сооружения:
, (49)
где - коэффициент бокового сжатия..
- коэффициент скорости. .
.
3) Рассчитаем вероятную глубину воды на водопропускном тракте:
, (50)
где - разность бьефов (51)
, (52)
– скорость движения воды на водопропускном тракте. .
.
.
4) Т. к. мы не можем утверждать, что найденная глубина – это действительная глубина на водопропускном тракте, то необходимо её проверить, рассчитав кривую спада. Уравнение кривой свободной поверхности определяется по формуле Ларькова
, (53)
Величина A определяется по следующей формуле:
, (54)
где - угол наклона водосброса к горизонтальной плоскости. .
- приведённый коэффициент расхода:
, (55)
- приведённый напор:
. (56)
Подставляем найденные величины и в формулу:
Далее определяем значение :
Таким образом, глубина воды в конце водопропускного тракта . Отсюда следует, что к концу водоспуска глубина уменьшается и образуется кривая спада.
Назначаем высоту стенок водопропускного тракта с учётом сухого запаса , т.е. глубина канала в начале , а в конце -. Или, округляя до стандартных величин, получим:
, .
Определим среднюю глубину воды на водопропускном тракте:
.
5) Рассчитаем расход, который может пропустить водопропускной тракт, по следующей зависимости
. (57)
.
Для проверки рассчитаем расход по формуле Шези:
, (58)
где - коэффициент Шези, определяемый по формуле
, (59)
где - коэффициент шероховатости бетона.
-гидравлический радиус:
Отсюда определяем коэффициент Шези:
ω – площадь поперечного сечения канала:
i – уклон дна водопропускного тракта
. (62)
Подставляем все найденные значения в формулу:
.
Рассчитанный расход превышает заданное значение, однако превышает на допустимую величину. Таким образом, окончательно принимаем ширину канала равной 2 м.
6) Рассчитаем скорость воды на водопропускном тракте:
, (63)
7) Т. к. полученное значение скорости превышает , то необходимо установить устойчивость потока. В случае если поток неустойчив, необходимо устраивать искусственную шероховатость для того, чтобы погасить энергию потока и стабилизировать его.
Поток устойчив в случае, когда , где - число Фруда:
, (64)
- критическое значение числа Фруда:
, (65)
Рассчитаем эти параметры для значения :
; .
, следовательно, поток неустойчив, и его необходимо стабилизировать с помощью искусственной шероховатости.
Теперь нужно рассчитать, в каком месте водопропускного тракта её устанавливать. Для этого определим и для разных глубин.
При
; .
При
; .
При
; .
Таким образом, искусственную шероховатость нужно начать устанавливать в том месте, где глубина воды превышает .
8) Рассчитаем высоту выступов искусственной шероховатости по следующей зависимости:
, (66)
где - глубина воды в том месте, где начинают устанавливать искусственную шероховатость. .
- гидравлический радиус
.
- скорость потока
. (67)
2.3 Окончательное проектное решение
Наиболее оптимальным водосбросным сооружением для данного проекта является береговой открытый водосброс. Проектируем его с полигональным входным оголовком.
В расчётах, приведённых выше, были определены размеры водосброса. Так, 5 граней входного оголовка равны: 4 шириной по 7 м, и одна – 3.5 м, ширина водопропускного тракта составляет 2 м. На самом водопропускном тракте установлена искусственная шероховатость для того, чтобы погасить энергию потока и стабилизировать его.
В нижнем бьефе устанавливается водобойная плита для предотвращения его размыва. За водобоем устанавливаем рисберму, после которой вода попадает в канал, соединяющий её с рекой.
3. Бетонная плотина
Одним из наиболее распространенных типов водосливных плотин являются бетонные, как наиболее простые по конструкции.
Основной отличительной особенностью водосливных бетонных плотин, возводимых на не скальных основаниях, является геометрическая форма, в основу которой положен рациональный треугольный профиль с наклонными гранями.
Бетонные водосливные плотины относятся к гравитационным гидротехническим сооружениям, устойчивость которых обеспечивается за счет их массы и сил трения. Материалом для плотин служит в основном бетон и железобетон.
Достоинства бетонных плотин заключается в простоте конструкции; возможности широкой механизации строительных работ; надежности конструкции в различных климатических условиях; возможности применения невысоких по прочности и стоимости марок бетона; недостатки – относительно большие удельные объемы бетона, неполное использование прочностных его свойств, неравномерное распределение напряжений в основании сооружения, неблагоприятное влияние внешних температурных колебаний и термического режима.
Для снижения указанных недостатков на низконапорных гидроузлах применяют плотины облегченной конструкции – с консолью, ячеистые, контрфорсные, решетчатые с вакуумно-безвакуумным профилем, плотины из мягких материалов и др. [4]
3.1 Проектирование тела бетонной плотины
Профиль водосливной плотины принимают с учетом её конструкции и высоты порога (высота напора воды 1 м). Плотины с порогом средней высоты имеют криволинейный профиль, которому придают очертания траектории свободного падения струи. Профили таких плотин строят по координатам Кригера – Офицерова [3]. Значение координат безвакуумного профиля вычисляют путем умножения координат, предложенных Кригером – Офицеровым на проектный напор: X=XH; Y=YH, значения Х и Y даны в таблице (2.3.).
Табл. 2.3.Значение координат х и у
х | у | х | У | х | У | х | у |
0,0 | 0,126 | 1,1 | 0,321 | 2,2 | 1,508 | 3,3 | 3,405 |
0,1 | 0,036 | 1,2 | 0,394 | 2,3 | 1,653 | 3,4 | 3,609 |
0,2 | 0,007 | 1,3 | 0,475 | 2,4 | 1,894 | 3,5 | 3,818 |
0,3 | 0,000 | 1,4 | 0,564 | 2,5 | 1,960 | 3,6 | 4,031 |
0,4 | 0,006 | 1,5 | 0,661 | 2,6 | 2,122 | 3,7 | 4,249 |
0,5 | 0,027 | 1,6 | 0,764 | 2,7 | 2,289 | 3,8 | 4,471 |
0,6 | 0,060 | 1,7 | 0,873 | 2,8 | 2,462 | 3,9 | 4,698 |
0,7 | 0,100 | 1,8 | 0,987 | 2,9 | 2,640 | 4,0 | 4,930 |
0,8 | 0,146 | 1,9 | 1,108 | 3,0 | 2,824 | 4,5 | 6,220 |
0,9 | 0,198 | 2,0 | 1,235 | 3,1 | 3,013 | ||
1,0 | 0,256 | 2,1 | 1,369 | 3,2 | 3,207 |
Сопряжение сливной грани с водобоем осуществляется при помощи криволинейной вставки радиусом R = 0.5 *(Н + z),
R = 0.5 * (1 + 13) = 7,0 м.
uде Н – высота напора, равная 1 м,
z = 13 м (отметка НПУ).
3.2 Расчет пропускной способности
Пропускная способность водосливного фронта плотины должна быть такова, чтобы максимальный расчётный расход воды в реке прошёл через неё в другие сооружения при напоре , соответствующем этому расходу
.
Чтобы определить пропускную способность плотины, рассчитаем ширину водосливного фронта:
,
где – коэффициент, учитывающий форму водослива и скорость подхода.
Н – напор на гребне водослива равный 1 м.
Определяется по специальному графику в зависимости от коэффициентов и .
– коэффициент расхода. Величина изменяется в широких пределах и зависит от величины напора на водосливе, а также от очертания оголовка водослива. Для принятого расчётного профиля водосливной плотины коэффициент расхода принимается равным 0,48.
– коэффициент бокового сжатия. Его величина определяется по формуле Замарина:
,
где – коэффициент, зависящий от формы быков. Для кругового очертания оголовка быка =0,7.
– число боковых сжатий;
– ширина одного пролёта.
При 4 пролётах b = 2,7 м:
Вакт. ср. = (10,8 + 8,4) / 2 = 9,6 м. При 4 пролётах b = 2,4 м.
Водосливные отверстия отделены друг от друга быками, служащими опорами для затворов, перекрывающих отверстия. Примем ширину быка равной 0,7 м.
Встроит. = 2,4 * 4 + 3 * 0,7 = 11,7 м.
3.3 Устройства нижнего бьефа водосливной плотины
Устройства нижнего бьефа водосливной плотины состоят из: водобоя с гасителями энергии; рисбермы, на которой происходит успокоение потока.
Водобой чаще всего устраивается в виде горизонтальной (а иногда и слегка наклонной) бетонной плиты – плоской или, как в данном проекте, в форме водобойного колодца. Водобойный колодец представляет собой углубление в грунте основания за плотиной. Бетон водобоя должен хорошо сопротивляться истирающему действию потока, движущемуся здесь с большими скоростями.
Определим глубину и длину водобойного колодца. Для этого расчитаем удельный расход :
Определим глубину в сжатом сечении по зависимости:
.
1,9 = 0,95.
Решая это уравнение, определим сжатую глубину: .
Определим раздельную глубину по формуле:
.
Глубина воды в нижнем бьефе . Назначаем .
Зная, что
,
можем определить глубину колодца :
,
где – глубина воды на рисберме.
– перепад на выходе из колодца, который определяется по следующей зависимости:
.
.
Т.к. эта величина очень мала, то при расчёте ею можно пренебречь.
При глубине воды на рисберме t= 0,8 м:
.
Определим длину водобойного колодца по формуле:
.
3.4 Пространственный гидравлический прыжок за водосливной плотиной
Для плотины с решётчатым водосливом и камерой гасителем характерен смешанный поверхностно-донный устойчивый режим сопряжения потока с нижним бьефом. При этом образуется пространственный гидравлический прыжок. Для затопления бурного потока в пространственных условиях необходимо обеспечить в нижнем бьефе определённую глубину, равную или большую рассчитанной по формуле:
где h0 – глубина воды на носке-трамплине водосливной плотины при выходе на водобой;
Fr – число Фруда:
β – относительная ширина русла на рисберме:
β = Вр / В,
где В- ширина водосливного фронта плотины;
Вр – ширина рисбермы: Вр = Q / qр ,
где qр – удельный расход на рисберме: qр = 1,7 * V * h1,2 р ,
V = 0,7 м/с – неразмывающая скорость,
hр – глубина потока на рисберме (1…2 м)
Вр = 16 / (1,7 * 0,7 * 11,2 ) = 13,4 м;
Fr = 162 / (13,42 * 0,43 * 9,81) = 2,27;
Fr > Frкр (Frкр = 12,71 ).
3.5 Устойчивость бетонной плотины
На практике расчёт устойчивости плотины ведут приближённым способом, предполагая, что грунт под плотиной перемещается вместе с ней, как бы сдвигаясь по некоторой криволинейной поверхности, принимаемой круговой.
Пусть на плотину и выделенный круговой сегмент грунта основания AОB действуют следующие силы.
1) Равнодействующая всех вертикальных сил , переносимая по линии её действия до встречи с дугой сегмента и раскладываемая на составляющие: радиальную и касательную
; ,
где - вес плотины
,
- площадь поперечного сечения плотины, которая определяется по рис.
.
– объёмный вес бетона. .
- угол между направлением силы и вертикальной прямой, замеряемый по чертежу.
Рассчитаем составляющие равнодействующей вертикальных сил
; .
2) Равнодействующая всех горизонтальных сил , перенесённая в плоскость подошвы, с составляющими
; ,
где - сила гидростатического давления
,
– объёмный вес воды..
– глубина воды перед плотиной. .
– угол между направлением силы и вертикальной прямой, замеряемый по чертежу.
Рассчитываем составляющие равнодействующей вертикальных сил
; .
3) Вес сегмента грунта
,
где – объёмный вес грунта (взвешенного в воде). .
– угол АОВ, замеряемый по чертежу. .
– радиус кругового сегмента грунта основания. .
.
4) Фильтрационное давление в основании
,
где - площадь сегмента AOB:
.
- градиент напора фильтрационного потока
,
где - падение напора.1 = 2,7 м; . 2 = 1,5 м
- длина дуги. 1 = 4 м; 2 = 13 м
I1 = 2,7 / 4 = 0,67 м ; I2 = 1,5 / 13 = 0,11 м
I1 > I2
1 = 137,4 * 1 *0,67 = 92,05 т ; 2 = 137,4 * 1 * 0,11 = 15,11 т
5) Силы трения в грунте, действующие нормально к направлениям сил , и (по касательным к дуге сегмента) и равные соответственно:
, , .
где - угол внутреннего трения грунта. .
29-04-2015, 00:43